設(shè)函數(shù)f(x)=Acosωx(A>0,ω>0)的部分圖象如圖所示,其中△PQR為等腰直角三角形,∠PQR=數(shù)學(xué)公式,PR=1.求:
(1)函數(shù)f(x)的解析式;
(2)函數(shù)數(shù)學(xué)公式在x∈[0,10]時(shí)的所有零點(diǎn)之和.

解:(1)由已知PR=1,
∴T=2=,∴ω=π
∵△PQR為等腰直角三角形,
∴Q到x軸的距離即為A=

(2)由,得,故(k∈Z),
所以當(dāng)x∈[0,10]時(shí)的所有零點(diǎn)之和為
分析:(1)先利用函數(shù)圖象確定函數(shù)的周期,從而確定ω的值,再利用△PQR為等腰直角三角形,求得函數(shù)f(x)的振幅A,從而確定函數(shù)解析式;
(2)先解方程f(x)=,得(k∈Z),再令k=0,1,2,3,4,即可得x∈[0,10]時(shí)的所有零點(diǎn),求和即可
點(diǎn)評(píng):本題主要考查了y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),由其部分函數(shù)圖象,求參數(shù)值的方法和技巧,簡(jiǎn)單的三角方程的解法,屬基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,定點(diǎn)A(2,π),動(dòng)點(diǎn)B在直線ρsin(θ+
π
4
)=
2
2
上運(yùn)動(dòng),則線段AB的最精英家教網(wǎng)短長(zhǎng)度為
 

(不等式選講選做題)設(shè)函數(shù)f(x)=|x-1|+|x-2|,則f(x)的最小值為
 

(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長(zhǎng)為6,其外接圓的半徑長(zhǎng)為5,則三角形ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+c(a≠0),若
1
0
f(x)dx=f(x0)0≤x0≤1
,則x0的值為(  )
A、
1
2
B、
3
4
f(x0)a
C、
3
2
D、
3
3
mm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=msinx+cosx(x∈R)的圖象經(jīng)過點(diǎn)(
π
2
,1)

(Ⅰ)求y=f(x)的解析式,并求函數(shù)的最小正周期和單調(diào)遞增區(qū)間
(Ⅱ)若f(
π
12
)=
2
sinA
,其中A是面積為
3
3
2
的銳角△ABC的內(nèi)角,且AB=2,求AC和BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=msinx+cosx(x∈R)的圖象經(jīng)過點(diǎn)(
π
2
,1)

(Ⅰ)求y=f(x)的解析式,并求函數(shù)的最小正周期和最值.
(Ⅱ)若f(
π
12
)=
2
sinA
,其中A是面積為
3
3
2
的銳角△ABC的內(nèi)角,且AB=2,求AC和BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選考題
請(qǐng)從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計(jì)分,請(qǐng)?jiān)诖痤}卷上注明題號(hào).
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當(dāng)AC=1,BC=2時(shí),求AD的長(zhǎng).
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與半圓C上的弧AP的長(zhǎng)度均為
π
3

(1)求以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案