若兩條曲線的極坐標(biāo)方程分別為p=l與p=2cos(θ+),它們相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
【答案】分析:先將原極坐標(biāo)方程中的三角函數(shù)式利用和角公式化開(kāi)后,兩邊同乘以ρ后化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行判斷.
解答:解:由ρ=1得x2+y2=1,(2分)
又∵,∴
,(4分)
,(8分)
.(10分)
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩條曲線的極坐標(biāo)方程分別為p=l與p=2cos(θ+
π3
),它們相交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城二模)選修4-4:坐標(biāo)系與參數(shù)方程
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π3
),它們相交于A、B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•江蘇二模)選答題:本大題共四小題,請(qǐng)從這4題中選作2小題,如果多做,則按所做的前兩題記分.每小題10分,共20分,解答時(shí)應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.
A、選修4-1:
幾何證明選講.如圖,圓O的直徑AB=4,C為圓周上一點(diǎn),BC=2,過(guò)C作圓O的切線l,過(guò)A作l的垂線AD,AD分別與直線l、圓O交于點(diǎn)D,E,求∠DAC的度數(shù)與線段AE的長(zhǎng).
B、選修4-2:矩陣變換
求圓C:x2+y2=4在矩陣A=[
20
01
]的變換作用下的曲線方程.
C、選修4-4:坐標(biāo)系與參數(shù)方程
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2sinθ,它們相交于A、B兩點(diǎn),求線段AB的長(zhǎng).
D、選修4-5:不等式選講
已知a、b、c為正數(shù),且滿足acos2θ+bsin2θ<c.求證:
a
cos2θ+
b
sin2θ<
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇錫常鎮(zhèn)四市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

選答題:本大題共四小題,請(qǐng)從這4題中選作2小題,如果多做,則按所做的前兩題記分.每小題10分,共20分,解答時(shí)應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.
A、選修4-1:
幾何證明選講.如圖,圓O的直徑AB=4,C為圓周上一點(diǎn),BC=2,過(guò)C作圓O的切線l,過(guò)A作l的垂線AD,AD分別與直線l、圓O交于點(diǎn)D,E,求∠DAC的度數(shù)與線段AE的長(zhǎng).
B、選修4-2:矩陣變換
求圓C:x2+y2=4在矩陣A=[]的變換作用下的曲線方程.
C、選修4-4:坐標(biāo)系與參數(shù)方程
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2sinθ,它們相交于A、B兩點(diǎn),求線段AB的長(zhǎng).
D、選修4-5:不等式選講
已知a、b、c為正數(shù),且滿足acos2θ+bsin2θ<c.求證:cos2θ+sin2θ<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省2010屆三校四模聯(lián)考 題型:解答題

 【選做題】在A、B、C、D四小題中只能選做兩題,每小題l0分,共計(jì)20分.請(qǐng)?jiān)?u>答題卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.

A.選修4 – 1幾何證明選講

如圖,△ABC的外接圓的切線AEBC的延長(zhǎng)線相交于點(diǎn)E,

BAC的平分線與BC交于點(diǎn)D.

求證:ED2= EB·EC.

 

 

 

 

 

B.矩陣與變換

已知矩陣,求滿足的二階矩陣

 

 

 

 

 

 

C.選修4 – 4 參數(shù)方程與極坐標(biāo)

若兩條曲線的極坐標(biāo)方程分別為r = 1與r = 2cos( + ),它們相交于AB兩點(diǎn),求線段AB的長(zhǎng).

 

 

 

 

 

 

D.選修4 – 5 不等式證明選講

設(shè)a,b,c為正實(shí)數(shù),求證:a3 + b3 + c3 + ≥2.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案