【題目】已知拋物線C:x2=2y的焦點為F,過拋物線上一點M作拋物線C的切線l,l交y軸于點N.
(1)判斷△MFN的形狀;
(2)若A,B兩點在拋物線C上,點D(1,1)滿足 + = ,若拋物線C上存在異于A,B的點E,使得經(jīng)過A,B,E三點的圓與拋物線在點E處的有相同的切線,求點E的坐標(biāo).

【答案】
(1)

解:由題意可知:拋物線C:x2=2y的焦點F(0, ),

設(shè)M(x1, ),由y= ,y′=x,

則切線l的方程y﹣ =x1(x﹣x1),則y=x1x﹣ ,

∴N(0, ),丨MF丨= + ,丨NF丨= +

丨MF丨=丨NF丨,


(2)

解:設(shè)A(x2, ),由 + = ,

∴D(1,1)是AB的中點,B(2﹣x2,2﹣ ),

由B在拋物線C上,則(2﹣x22=2(2﹣ ),

解得:x2=0,x2=2,

∴A,B兩點的坐標(biāo)為(0,0),(2,2),

設(shè)E(x0, ),(x0≠0,x0≠2),

AB的中垂線方程y=﹣x+2,①AE的中垂線方程y=﹣ x+1+ ,②

由①②解得:圓心M(﹣ ),

由kMEx0=﹣1,整理得:x02﹣x0﹣2=0,

解得:x0=﹣1或x0=2,由x0≠0,x0≠2,

∴x0=﹣1,

∴E點坐標(biāo)為(﹣1, ).


【解析】(1)利用導(dǎo)數(shù)求得切線方程,當(dāng)x=0,求得N點坐標(biāo),根據(jù)拋物線的焦半徑公式,即可求得丨MF丨=丨NF丨,則△MFN為等腰三角形;(2)根據(jù)向量的坐標(biāo)運算,求得B點坐標(biāo),分別求得AE及AB的中垂線方程,即可求得△ABE外接圓的圓心,由kMEx0=﹣1,即可求得點E的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:關(guān)于x的不等式|x﹣2|+|x+2|>m的解集是R; q:關(guān)于x的不等式x2+mx+4>0的解集是R.則p成立是q成立的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(均為整數(shù))分成六組, ,…, 后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:

(1)補(bǔ)全頻率分布直方圖;

(2)估計本次考試的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績中抽取一個容量為6的樣本,再從這6個樣本中任取2人成績,求至多有1人成績在分?jǐn)?shù)段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比不為1的等比數(shù)列{an}的前3項積為27,且2a2為3a1和a3的等差中項.
(1)求數(shù)列{an}的通項公式an;
(2)若數(shù)列{bn}滿足bn=bn1log3an+1(n≥2,n∈N*),且b1=1,求數(shù)列{ }的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)約用水,學(xué)校改革澡堂收費制度,實行計時收費,洗澡時間在30分鐘以內(nèi)(30分鐘),每分鐘收費0.1,30分鐘以上超出的部分每分鐘0.2,請設(shè)計程序,使用基本語句完成澡堂計費工作,要求輸入時間,輸出費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax﹣1|
(1)若f(x)≤2的解集為[﹣3,1],求實數(shù)a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù)數(shù)列的前項和為

(1)求數(shù)列的通項公式;

(2)若且數(shù)列是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;

(3)若數(shù)列滿足:對于任意給定的正整數(shù),是否存在使 ?若存在,求的值(只要寫出一組即可);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,ABAC,且AA1=AB=AC,則異面直線AB1BC1所成角為_____

查看答案和解析>>

同步練習(xí)冊答案