【題目】為了節(jié)約用水,學校改革澡堂收費制度,實行計時收費,洗澡時間在30分鐘以內(nèi)(30分鐘),每分鐘收費0.1,30分鐘以上超出的部分每分鐘0.2,請設計程序,使用基本語句完成澡堂計費工作,要求輸入時間,輸出費用.

【答案】見解析.

【解析】試題分析:本題考查的知識點是設計程序框圖解決實際問題,我們根據(jù)題目已知中分段函數(shù)的解析式y=,然后根據(jù)分類標準,設置兩個判斷框的并設置出判斷框中的條件,再由函數(shù)各段的解析式,確定判斷框的“是”與“否”分支對應的操作,由此即可畫出流程圖,再編寫滿足題意的程序.

試題解析:

設時間為t(單位:分鐘),費用為y(單位:元),則

y=

程序框圖如圖所示.

這里應用的是條件結構,應該用條件語句來表述.

INPUT t

IF t<=30 THEN

y=0.1x

ELSE

y=3+0.2(x30)

END IF

PRINT y

END

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為,則下列結論中不正確的是

A. y與x具有正的線性相關關系

B. 回歸直線過樣本點的中心

C. 若該大學某女生身高增加1 cm,則其體重約增加0.85 kg

D. 若該大學某女生身高為170 cm,則可斷定其體重必為58.79 kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某圓拱橋的圓拱跨度為20 m,拱高為4 m.現(xiàn)有一船,寬10 m,水面以上高3 m,這條船能否從橋下通過?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:x2=2y的焦點為F,過拋物線上一點M作拋物線C的切線l,l交y軸于點N.
(1)判斷△MFN的形狀;
(2)若A,B兩點在拋物線C上,點D(1,1)滿足 + = ,若拋物線C上存在異于A,B的點E,使得經(jīng)過A,B,E三點的圓與拋物線在點E處的有相同的切線,求點E的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校夏令營有3名男同學和3名女同學,其年級情況如下表,現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同).

一年級

二年級

三年級

男同學

女同學

(1)用表中字母列舉出所有可能的結果;

(2)設為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

1)若直線與圓交于不同的兩點,時,求的值.

2)若是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點;

3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且cosC=
(1)求B;
(2)設CM是角C的平分線,且CM=1,b=6,求cos∠BCM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小萌大學畢業(yè)后,家里給了她10萬元,她想辦一個“萌萌”加工廠,根據(jù)市場調(diào)研,她得出了一組毛利潤(單位:萬元)與投入成本(單位:萬元)的數(shù)據(jù)如下:

投入成本

0.5

1

2

3

4

5

6

毛利潤

1.06

1.25

2

3.25

5

7.25

9.98

為了預測不同投入成本情況下的利潤,她想在兩個模型中選一個進行預測.

(1)根據(jù)投入成本2萬元和4萬元的兩組數(shù)據(jù)分別求出兩個模型的函數(shù)解析式,請你根據(jù)給定數(shù)據(jù)選出一個較好的函數(shù)模型進行預測(不必說明理由),并預測她投入8萬元時的毛利潤;

(2)若小萌準備最少投入2萬元開辦加工廠,請預測加工廠毛利潤率的最大值,并說明理由.(

查看答案和解析>>

同步練習冊答案