(本題滿分8分)將一枚質(zhì)地均勻的骰子連擲兩次,記向上的點數(shù)分別為

(Ⅰ)求事件“”的概率;

(Ⅱ)求事件“方程有實根”的概率.

 

【答案】

解:由題意得,基本事件的總個數(shù)是,   ……………………1分

(Ⅰ)事件“”包含基本事件:,共5個,

∴所求事件的概率為.        ………………………………………………4分

(Ⅱ)

=1則=2,3,4,5,6,若=2則=3,4,5,6,

=3則=4,5,6,      若=4則=4,5,6,

=5則=5,6,         若=6則=5,6,

∴ 事件“方程有實根”包含基本事件共5+4+3+3+2+2=19個,

∴所求事件的概率為.          ………………………………………………8分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)某公司“咨詢熱線”電話共有10路外線,經(jīng)長期統(tǒng)計發(fā)現(xiàn),在8點至10點這段時間內(nèi),英才苑外線電話同時打入情況如下表所示:

電話同時打入數(shù)ξ

0

1

2

3

4

5

6

7

8

9

10

概率P

0.13

0.35

0.27

0.14

0.08

0.02

0.01

0

0

0

0

  (1)若這段時間內(nèi),公司只安排了2位接線員(一個接線員一次只能接一個電話).

      ①求至少一路電話不能一次接通的概率;

      ②在一周五個工作日中,如果有三個工作日的這一時間內(nèi)至少一路電話不能一次接通,那么公司的形象將受到損害,現(xiàn)用至少一路電話一次不能接通的概率表示公司形象的“損害度”,求這種情況下公司形象的“損害度”;(2)求一周五個工作日的這一時間內(nèi),同時打入的電話數(shù)ξ的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(xué)(文) 題型:解答題

(本題滿分13分)
某運動員進行20次射擊練習(xí),記錄了他射擊的有關(guān)數(shù)據(jù),得到下表:

環(huán)數(shù)
7
8
9
10
命中次數(shù)
2
7
8
3
 
(Ⅰ)求此運動員射擊的環(huán)數(shù)的平均數(shù);
(Ⅱ)若將表中某一環(huán)數(shù)所對應(yīng)的命中次數(shù)作為一個結(jié)果,在四個結(jié)果(2次、7次、8次、3次)中,隨機取2個不同的結(jié)果作為基本事件進行研究,記這兩個結(jié)果分別為次、次,每個基本事件為(m,n).
求“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對于數(shù)列,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項,第三項和第五項.

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個命題:“對于首項為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項,由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省臺州市高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分8分)將一枚質(zhì)地均勻的骰子連擲兩次,記向上的點數(shù)分別為

(Ⅰ)求事件“”的概率;

(Ⅱ)求事件“方程有實根”的概率.

 

查看答案和解析>>

同步練習(xí)冊答案