已知A(0,7),B(O,-7),C(12,2),以C為一個焦點(diǎn)作過A、B的橢圓,則橢圓的另一焦點(diǎn)的軌跡方程為 .
【答案】
分析:首先設(shè)橢圓的另一焦點(diǎn)為M,長軸為2a;依題意,有|AM|+|AC|=2a,且|BM|+|BC|=2a;整理變形可得|AM|-|BM|=|BC|-|AC|=2,可得M的軌跡是以A、B為焦點(diǎn),實(shí)半軸為1的雙曲線的下支,由雙曲線的標(biāo)準(zhǔn)方程的求法,計算可得答案.
解答:解:設(shè)橢圓的另一焦點(diǎn)為M,長軸為2a;
根據(jù)A、B在橢圓上,有|AM|+|AC|=2a,且|BM|+|BC|=2a;
則有|AM|+|AC|=|BM|+|BC|;
化簡可得:|AM|-|BM|=|BC|-|AC|=2;
則M的軌跡是以A、B為焦點(diǎn),實(shí)半軸為1的雙曲線的下支(|AM|>|BM|),
則M的軌跡方程為:
,(y<0).
點(diǎn)評:本題考查雙曲線的標(biāo)準(zhǔn)方程,注意區(qū)分求得的軌跡是雙曲線的一支還是兩支,這點(diǎn)必須在答案的軌跡方程中表現(xiàn)出來.