【題目】定義區(qū)間,,的長度均為,多個區(qū)間并集的長度為各區(qū)間長度之和,例如, 的長度. 用表示不超過的最大整數(shù),記,其中.設(shè),當(dāng)時,不等式解集區(qū)間的長度為,則的值為

A. B. C. D.

【答案】B

【解析】

先化簡f(x)=[x]{x}=[x](x﹣[x])=[x]x﹣[x]2,再化簡f(x)g(x),再分類討論:①當(dāng)x[0,1)時,②當(dāng)x[1,2)時③當(dāng)x[2,3)時,從而得出f(x)g(x)在0xk時的解集的長度,依題意即可求得k的值.

f(x)=[x]{x}=[x](x﹣[x])=[x]x﹣[x]2,g(x)=x﹣1,

f(x)g(x)[x]x﹣[x]2x﹣1即([x]﹣1)x<[x]2﹣1,

當(dāng)x[0,1)時,[x]=0,上式可化為x1,

x

當(dāng)x[1,2)時,[x]=1,上式可化為00,

x;

當(dāng)x[2,3)時,[x]=2,[x]﹣10,上式可化為x<[x]+1=3,

∴當(dāng)x[0,3)時,不等式f(x)g(x)解集區(qū)間的長度為d=3﹣2=1;

同理可得,當(dāng)x[3,4)時,不等式f(x)g(x)解集區(qū)間的長度為d=4﹣2=2;

∵不等式f(x)g(x)解集區(qū)間的長度為5,

k﹣2=5,k=7.

故答案為:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車的出現(xiàn)為市民綠色出行提供了極大的方便,某共享單車公司計劃在甲、乙兩座城市共投資240萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資80萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

(1)當(dāng)投資甲城市128萬元時,求此時公司總收益;

⑵試問如何安排甲、乙兩個城市的投資,才能使公司總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)已知為平面內(nèi)的兩個定點,過點的直線與軌跡交于,兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xexxax2.

(1)當(dāng)a時,求f(x)的單調(diào)區(qū)間;

(2)當(dāng)x≥0時,f(x)≥0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)點的直角坐標(biāo)為,直線與曲線的交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在實數(shù),對任意實數(shù),使不等式恒成立,則實數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體,四邊形為菱形,,,、、都垂直于面,,的中點的中點

(1)求證為等腰直角三角形;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角所對的邊分別為,滿足

1)求的大;

2)如圖,,在直線的右側(cè)取點,使得.當(dāng)角為何值時,四邊形面積最大.

查看答案和解析>>

同步練習(xí)冊答案