(本小題為必做題,滿分10分)已知數(shù)列滿足:.
(1) 求證:使
(2) 求的末位數(shù)字.
解:(1)當n=1時,a1=3,
假設n=k時,
n=k+1時,

 
其中
使n=k+1時,結(jié)論也成立.     
使                             …………7分
(2) 故的末位數(shù)字是7.       …………10分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
直線過點P斜率為,與直線交于點A,與軸交于點B,點A,B的橫坐標分別為,記.
(Ⅰ)求的解析式;
(Ⅱ)設數(shù)列滿足,求數(shù)列的通項公式;
(Ⅲ)在(Ⅱ)的條件下,當時,證明不等式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

用三段論證明: 通項公式的數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}滿足a1=2,對于任意的n∈N,都有an>0,且(n+1)a+anan+1-na=0,又知數(shù)列{bn}:b1=2n-1+1
(1)求數(shù)列{an}的通項an以及它的前n項和Sn;
(2)求數(shù)列{bn}的前n項和Tn;
(3)猜想Sn和Tn的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


設數(shù)列的前項和為,且,數(shù)列為等差數(shù)列,公差大于0,且 是方程的兩個實根
(1) 求數(shù)列、的通項公式;   (2) 若 ,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知:有窮數(shù)列{an}共有2k項(整數(shù)k≥2 ),a1="2" ,設該數(shù)列的前n項和為 Sn且滿足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通項公式;
(2)設bn=log2an,求{bn}的前n項和Tn;
(3)設cn=,若a=2,求滿足不等式 + +…++時k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù)
(I)求函數(shù)的通項公式;
(Ⅱ)設的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知正項數(shù)列中,,點在函數(shù)的圖像上,數(shù)列中,點在直線上,其中是數(shù)列的前項和。。
(1)  求數(shù)列的通項公式;
(2)  求數(shù)列的前n項和。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列滿足=2,,則的值為.( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案