(本小題滿分12分)
已知正項數(shù)列中,,點在函數(shù)的圖像上,數(shù)列中,點在直線上,其中是數(shù)列的前項和。
(1)  求數(shù)列的通項公式;
(2)  求數(shù)列的前n項和。
解:(1)由題意得:-------3
是以2為首項,1為公差的等差數(shù)列
----------6
(2)由題意得:        ①-------7
當n=1時,
時,      ②
①—②得:    

是以2為首項,為公比的等比數(shù)列-------10
 --------------12
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
從數(shù)列中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列的一個子數(shù)列.
設數(shù)列是一個首項為、公差為的無窮等差數(shù)列.
(1)若,成等比數(shù)列,求其公比
(2)若,從數(shù)列中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為的無窮等比子數(shù)列,請說明理由.
(3)若,從數(shù)列中取出第1項、第項(設)作為一個等比數(shù)列的第1項、第2項.求證:當為大于1的正整數(shù)時,該數(shù)列為的無窮等比子數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
在數(shù)列中,,
(1)設,證明:數(shù)列是等差數(shù)列;
(2)設數(shù)列的前項和為,求的值;
(3)設,數(shù)列的前項和為,,是否存在實數(shù),使得對任意的正整數(shù)和實數(shù),都有成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題為必做題,滿分10分)已知數(shù)列滿足:.
(1) 求證:使
(2) 求的末位數(shù)字.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設數(shù)列為等差數(shù)列,且,,數(shù)列的前項和為,;,
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)若,為數(shù)列的前項和. 求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定義域為的二次函數(shù)的最小值為,直線的圖像截得的弦長為,數(shù)列滿足,,設的最值及相應的

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

 若為等差數(shù)列的連續(xù)三項,則的值為(  )                                
A.2047
B.1062
C.1023
D.531

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列中,公差,前項的和,則的值為(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若等差數(shù)列的前5項和,且,則
A.12  B.13C.14    D.15

查看答案和解析>>

同步練習冊答案