(1)已知函數(shù)y=f(x)的定義域?yàn)镽,且當(dāng)x∈R時(shí),f(m+x)=f(m-x)恒成立,求證y=f(x)的圖象關(guān)于直線x=m對(duì)稱;
(2)若函數(shù)y=log2|ax-1|的圖象的對(duì)稱軸是x=2,求非零實(shí)數(shù)a的值.
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)P(s,t)是y=f(x)圖象上任一點(diǎn),P點(diǎn)關(guān)于x=m的對(duì)稱點(diǎn)為P',運(yùn)用對(duì)稱知識(shí)求出P'的坐標(biāo),說(shuō)明也在函數(shù)f(x)的圖象上即可得證;
(2)根據(jù)(1)得到log2|a(2+x)-1|=log2|a(2-x)-1|恒成立,然后由對(duì)數(shù)知識(shí),去對(duì)數(shù)符號(hào),整理,由x的任意性和a不為0,即可求出a的值.
解答: (1)證明:設(shè)P(s,t)是y=f(x)圖象上任一點(diǎn),則t=f(s),
又P點(diǎn)關(guān)于x=m的對(duì)稱點(diǎn)為P',則P'(2m-s,t),
由已知f(m+x)=f(m-x)得,f(2m-s)=f(m+(m-s))=f(m-(m-s))=f(s)=t,
即P'在y=f(x)的圖象上,
∴y=f(x)的圖象關(guān)于直線x=m對(duì)稱;
(2)解:∵函數(shù)y=log2|ax-1|的圖象的對(duì)稱軸是x=2,
∴l(xiāng)og2|a(2+x)-1|=log2|a(2-x)-1|恒成立,
即|a(2+x)-1|=|a(2-x)-1|恒成立,
即|ax+(2a-1)|=|-ax+(2a-1)|恒成立,
∵a≠0,∴2a-1=0,即a=
1
2
點(diǎn)評(píng):本題考查函數(shù)的對(duì)稱性及運(yùn)用,注意設(shè)點(diǎn)求對(duì)稱點(diǎn),同時(shí)考查恒成立問(wèn)題,注意轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:
(1)|x-1|<1-2x
(2)|x-1|-|x+1|>x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
1
2
,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:mx+y+1=0與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使|
OA
+
OB
|=|
OA
-
OB
||成立?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定C
 
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且C
 
0
x
=1這是組合數(shù)C
 
m
n
(n,m是正整數(shù),且m≤n)的一種推廣.
(1)C
 
5
-15
的值;
(2)組合數(shù)的兩個(gè)性質(zhì):C
 
m
n
=C
 
n-m
n
;C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
是否都能推廣到C
 
m
x
(x∈R,m∈N*)的情形?若能推廣,則寫出推廣的形式并給予證明,或不能則說(shuō)明理由;
(3)已知組合數(shù)C
 
m
n
是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時(shí),C
 
m
x
∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

C
r
12
=
C
2r-3
12
,則r=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公比不為1的等比數(shù)列{an}的首項(xiàng)a1=
1
2
,前n項(xiàng)和為Sn,且a3+S5,a4+S4,a5+S3成等差數(shù)列.
(1)求等比數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N+,在an與an+1之間插入3n個(gè)數(shù),使這個(gè)3n+2個(gè)數(shù)成等差數(shù)列,記插入的這個(gè)3n個(gè)數(shù)的和為bn,且cn=
3n
4bn
.求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-ax+ex,x∈R
(1)若a=e,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a>0,且對(duì)于任意x>0不等式f(x)>0恒成立,試確定實(shí)數(shù)a的取值范圍;
(3)構(gòu)造函數(shù)F(x)=f(x)+f(-x)(x>0),求證:F(1)F(2)…F(2014)>(e2015+2)1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求C
 
2
2
+C
 
2
3
+C
 
2
4
+…+C
 
2
10
;
(2)已知A
 
3
n
=C
 
4
n
,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a10a11+a9a12=2e5,則lna1+lna2+…+lna20=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案