已知.
①若函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍;
②若函數(shù)f(x)在區(qū)間(-∞,1-)上是增函數(shù),求實數(shù)m的取值范圍.
① ;②.
解析試題分析:①根據(jù)復(fù)合函數(shù)中的對數(shù)函數(shù)和二次函數(shù)的圖像和性質(zhì)解題確定m的取值;②由復(fù)合函數(shù)的性質(zhì),結(jié)合二次函數(shù)的圖像解題,判斷區(qū)間端點與對稱軸的位置關(guān)系,注意復(fù)合函數(shù)單調(diào)性的判斷是本題的關(guān)鍵.
試題解析:①設(shè),
要使得函數(shù)的值域為R,則能取遍所有的正數(shù), 2分
則有, 4分
解得; 6分
②函數(shù)的底數(shù)是,那么若函數(shù)f(x)在區(qū)間(-∞,1-)上是增函數(shù),
函數(shù)在區(qū)間上是減函數(shù), 8分
則有, 10分
解得. 12分
考點:復(fù)合函數(shù)的性質(zhì),對數(shù)函數(shù)和二次函數(shù)的圖像和性質(zhì)的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像在點處的切線方程為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求函數(shù)在區(qū)間上的最大值;
(Ⅲ)若曲線上存在兩點使得是以坐標(biāo)原點為直角頂點的直角三角形,且斜邊的中點在軸上,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值為12.
(1)求的解析式;
(2)設(shè)函數(shù)在上的最小值為,求的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時間僅能持續(xù)5個月,預(yù)測上市初期和后期會因供應(yīng)不足使價格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求,使價格連續(xù)下跌.現(xiàn)有三種價格模擬函數(shù):①;②;③.(以上三式中均為常數(shù),且)
(1)為準(zhǔn)確研究其價格走勢,應(yīng)選哪種價格模擬函數(shù)(不必說明理由)
(2)若,,求出所選函數(shù)的解析式(注:函數(shù)定義域是.其中表示8月1日,表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟效益,當(dāng)?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預(yù)測該海鮮將在哪幾個月份內(nèi)價格下跌.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)與兩坐標(biāo)軸分別交于不同的三點A、B、C.
(1)求實數(shù)t的取值范圍;
(2)當(dāng)時,求經(jīng)過A、B、C三點的圓F的方程;
(3)過原點作兩條相互垂直的直線分別交圓F于M、N、P、Q四點,求四邊形的面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時,(萬元).當(dāng)年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)滿足條件f(0)=1和f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com