精英家教網 > 高中數學 > 題目詳情

【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的正方形的中心為為圓上的點,,,分別是以為底邊的等腰三角形.沿虛線剪開后,分別以為折痕折起,,,使得重合,得到一個四棱錐.當該四棱錐的側面積是底面積的2倍時,該四棱錐的外接球的表面積為__________

【答案】

【解析】

先連接與點,結合四棱錐的側面積是底面積的2倍,求得正方形邊長,再畫出折疊后的立體圖形,找出外接球的球心,結合勾股定理即可求解

如圖:

連接與點,設正方形邊長為,,則

則正方形面積為:,四棱錐的側面積為:,由題意得,即,解得,畫出折疊后的立體圖形.如圖:

設重合點為,該四棱錐為正四棱錐,球心應在的連線上,設為,設外接球半徑為,則,,,,由勾股定理得,即,解得,外接球表面積為:

故答案為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】第一屆“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京舉行,為了保護各國國家元首的安全,某部門將5個安保小組安排到指定的三個區(qū)域內工作,且每個區(qū)域至少有一個安保小組,則這樣的安排方法共有________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校學生社團心理學研究小組在對學生上課注意力集中情況的調查研究中,發(fā)現其在40分鐘的一節(jié)課中,注意力指數與聽課時間(單位:分鐘)之間的關系滿足如圖所示的曲線.當時,曲線是二次函數圖象的一部分,當時,曲線是函數圖象的一部分.根據專家研究,當注意力指數大于80時學習效果最佳.

(1)試求的函數關系式;

(2)教師在什么時段內安排核心內容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中,正確說法的個數是( )

①在用列聯(lián)表分析兩個分類變量之間的關系時,隨機變量的觀測值越大,說明“有關系”的可信度越大

②以模型去擬合一組數據時,為了求出回歸方程,設,將其變換后得到線性方程,則的值分別是和0. 3

③已知兩個變量具有線性相關關系,其回歸直線方程為,若,,則

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,平面平面,,,.

(1)求證:平面;

(2)求二面角的正弦值;

(3)在棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(l,2)在函數f(x)=ax3的圖象上,則過點A的曲線C:y=fx)的切線方程是( 。

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數fx),若fx)的圖象上存在關于原點對稱的點,則稱fx)為定義域上的偽奇函數

1)若fx)=ln2x+1+m是定義在區(qū)間[1,1]上的偽奇函數,求實數m的取值范圍;

2)試討論fx)=4xm2x+2+4m23R上是否為偽奇函數?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱臺中,點上,且,點內(含邊界)的一個動點,且有平面平面,則動點的軌跡是( )

A. 平面B. 直線C. 線段,但只含1個端點D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代數學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經驗方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現有圓心角為,半徑等于米的弧田,按照上述經驗公式計算所得弧田面積約是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

同步練習冊答案