若{an}既為等差數(shù)列,又為等比數(shù)列,求證ana1,nN*

 

答案:
解析:

【證明】 由已知a1da1q                                                                                  

a12da1q2                                                                                                                                                                                                                     

由①得a1(1q)=-d                                                                                             

由②得a1(1q2)=-2d                                                                                                 

a1(1q2)2a1(1q)                                                                                           

∵{an}為等比數(shù)列,則a10,q0

則由⑤,得1q2q1

ana1qn1a1

 


提示:

只有非零的常數(shù)列既是等差數(shù)列,又是等比數(shù)列,也可利用等差中項(xiàng)和等比中項(xiàng)證明此結(jié)論.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

若{an}既為等差數(shù)列,又為等比數(shù)列,求證ana1nN*.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

若{an}既為等差數(shù)列,又為等比數(shù)列,求證ana1,nN*

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

若{an}既為等差數(shù)列,又為等比數(shù)列,求證ana1,nN*.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若{an}既為等差數(shù)列,又為等比數(shù)列,求證:ana1,nN*.

查看答案和解析>>

同步練習(xí)冊(cè)答案