在平面直角坐標系中,設點(1,0),直線:,點在直線上移動,是線段軸的交點, .
(Ⅰ)求動點的軌跡的方程;
(Ⅱ) 記的軌跡的方程為,過點作兩條互相垂直的曲線的弦,設、 的中點分別為.求證:直線必過定點
(Ⅰ)動點的軌跡是以為焦點,為準線的拋物線,其方程為:.  
(Ⅱ)見解析

(Ⅰ)依題意知,直線的方程為:.點是線段的中點,且,∴是線段的垂直平分線.…………………….2分
是點到直線的距離.
∵點在線段的垂直平分線,∴.…………4分
故動點的軌跡是以為焦點,為準線的拋物線,其方程為:.    ……….7分
(Ⅱ) 設,直線AB的方程為…………….8分
         則
(1)—(2)得,即,……………………………………9分
代入方程,解得
所以點M的坐標為.……………………………………10分
同理可得:的坐標為
直線的斜率為,方程為
,整理得,………………12分
顯然,不論為何值,均滿足方程,
所以直線恒過定點.………………14
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線上的點與焦點的距離為,則與準線的距離為(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設拋物線的焦點為F,過點M的直線與拋物線相交于兩點,與拋物線的準線相交于點C,的面積之比______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,某隧道設計為雙向四車道,車道總寬22m,要求通行車輛限高4.5m,隧道全長2.5km,隧道的拱線近似地看成半個橢圓形狀。
(1)若最大拱高h為6m,則拱寬應設計為多少?
(2)若最大拱高h不小于6m,則應如何設計拱高h和拱寬,才能使建造這個隧道的土方工程量最。ò霗E圓面積公式為h)?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

焦點在上的拋物線的標準方程為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線的焦點為F,在拋物線上,且存在實數(shù)λ,使0,
(1)求直線AB的方程;
(2)求△AOB的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A(1,4),拋物線y2=16x的內接△ABC的重心恰好為拋物線的焦點,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線y2=8x的焦點坐標是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知動點P到定點的距離和它到定直線的距離相等,則點P的軌跡方程為_________.

查看答案和解析>>

同步練習冊答案