已知函數(shù),
(1)若,求的范圍;   (2)不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍。

(1)    (2)

解析試題分析: (1)根據(jù)題意,由于函數(shù),則可知
(2)根據(jù)題意,由于不等式對(duì)任意恒成立,等價(jià)于而二次函數(shù)對(duì)稱軸為x=2,那么在定義域內(nèi)遞減函數(shù),不可知函數(shù)的最小值為f(1)=-3,故可知m的范圍是
考點(diǎn):不等式的求解
點(diǎn)評(píng):主要是考查了二次不等式以及二次函最值的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

有兩個(gè)投資項(xiàng)目、,根據(jù)市場調(diào)查與預(yù)測,A項(xiàng)目的利潤與投資成正比,其關(guān)系如圖甲,B項(xiàng)目的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙.(注:利潤與投資單位:萬元)

(1)分別將A、B兩個(gè)投資項(xiàng)目的利潤表示為投資x(萬元)的函數(shù)關(guān)系式;
(2)現(xiàn)將萬元投資A項(xiàng)目, 10-x萬元投資B項(xiàng)目.h(x)表示投資A項(xiàng)目所得利潤與投資B項(xiàng)目所得利潤之和.求h(x)的最大值,并指出x為何值時(shí),h(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足:①;②.
(1)求的解析式;
(2)若對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是二次函數(shù),不等式的解集為,且在區(qū)間上的最小值是4.
(Ⅰ)求的解析式;
(Ⅱ)設(shè),若對(duì)任意的,均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對(duì)任意,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用水清洗一堆蔬菜上殘留的農(nóng)藥,對(duì)用一定量的水清洗一次的效果作如下假定:用一個(gè)單位的水可洗掉蔬菜上殘留農(nóng)藥的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)
⑴試規(guī)定的值,并解釋其實(shí)際意義;
⑵試根據(jù)假定寫出函數(shù)應(yīng)滿足的條件和具有的性質(zhì);
⑶設(shè),現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成兩份后清洗兩次.試問用那種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),且曲線斜率最小的切線與直線平行.求:(1)的值;(2)函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,表示神風(fēng)摩托車廠一天的銷售收入與摩托車銷售量的關(guān)系;表示摩托車廠一天的銷售成本與銷售量的關(guān)系.

(1)寫出銷售收入與銷售量之間的函數(shù)關(guān)系式;
(2)寫出銷售成本與銷售量之間的函數(shù)關(guān)系式;
(3)當(dāng)一天的銷售量為多少輛時(shí),銷售收入等于銷售成本;
(4)當(dāng)一天的銷售超過多少輛時(shí),工廠才能獲利?(利潤=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)
(II)

查看答案和解析>>

同步練習(xí)冊(cè)答案