【題目】設(shè)函數(shù)f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它們在x=1處的切線互相平行.

(1)求b的值;

(2)若函數(shù)且方程F(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)由處的切線互相平行得, ,解方程求出值.
(2)分別求出求出的極值和的極值,結(jié)合單調(diào)性畫出的圖象,結(jié)合圖象可得若方程有四個解,則 ,解不等式求得實數(shù)的取值范圍.

試題解析:函數(shù)g(x)=bx2-ln x的定義域為(0,+∞),

(1)f′(x)=3ax2-3af′(1)=0,

g′(x)=2bxg′(1)=2b-1,

依題意得2b-1=0,所以b.

(2)x∈(0,1)時,g′(x)=x<0,

g(x)在(0,1)上單調(diào)遞減,

x∈(1,+∞)時,g′(x)=x>0,即g(x)在(1,+∞)上單調(diào)遞增,所以當(dāng)x=1時,g(x)取得極小值g(1)=;當(dāng)a=0時,方程F(x)=a2不可能有四個解;

當(dāng)a<0,x∈(-∞,-1)時,f′(x)<0,即f(x)在(-∞,-1)上單調(diào)遞減,x∈(-1,0)時,f′(x)>0,

f(x)在(-1,0)上單調(diào)遞增,

所以當(dāng)x=-1時,f(x)取得極小值f(-1)=2a,

f(0)=0,所以F(x)的圖象如圖①所示,

從圖象可以看出F(x)=a2不可能有四個解.

當(dāng)a>0,x∈(-∞,-1)時,f′(x)>0,

f()在(-∞,-1)上單調(diào)遞增,

x∈(-1,0)時,f′(x)<0,

f(x)在(-1,0)上單調(diào)遞減,

所以當(dāng)x=-1時,f(x)取得極大值f(-1)=2a.又f(0)=0,所以F(x)的圖象如圖②所求,

從圖②看出,若方程F(x)=a2有四個解,則a2<2a

a<2,

所以,實數(shù)a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,函數(shù) ,且圖象上一個最高點為最近的一個最低點的坐標為 .

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)設(shè)為常數(shù),判斷方程在區(qū)間上的解的個數(shù);

(Ⅲ)在銳角中,若,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù).

1)若方程有兩不等實根,求的范圍;

2)若上的最小值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以坐標原點為極點,軸的正半軸為極軸建立的極坐標系中,曲線的參數(shù)方程(為參數(shù)),曲線的極坐標方程:.

(1)求曲線和曲線的直角坐標方程;

(2)設(shè)曲線軸于點(不是原點),過點的直線交曲線于A,B兩個不同的點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次學(xué)科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

則參加測試的總?cè)藬?shù)為______,分數(shù)在之間的人數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個正方體的平面展開圖,在這個正方體中平面ADE;平面ABF;平面平面AFN;平面平面NCF.以上四個命題中,真命題的序號是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,則不等式fx-2+fx2-4)<0的解集為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M,設(shè)點B,C是直線l上的兩點,它們的橫坐標分別是t,,P點的縱坐標為a且點P在線段BC上,過P點作圓M的切線PA,切點為A

,,求直線PA的方程;

經(jīng)過A,P,M三點的圓的圓心是D,

表示成a的函數(shù),并寫出定義域.

求線段DO長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計

男生

5

女生

10

合計

50

已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有99%的把握認為“喜愛打籃球與性別有關(guān)”?說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案