①由“若a,b,c∈R,則(ab)c=a(bc)”類比“若a、b、c為三個向量,則(a·b)c=a(b·c)”;
②在數(shù)列{an}中,a1=0,an+1=2an+2,猜想an=2n-2;
③在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積”;
上述三個推理中,正確的個數(shù)為(  )

A.0B.1C.2D.3

解析試題分析:①顯然錯誤,向量沒有結(jié)合律;
②根據(jù),可構(gòu)造出,即,可得,該數(shù)列是公比為2,首項是的等比數(shù)列,所以其通項公式為,可得,正確;
③四面體就是三棱錐,可看作是底面三角形中任取一點,將其向上提而形成的幾何體,顯然三個側(cè)面的面積之和大于底面面積.正確.
考點:向量運算定律;利用遞推公式構(gòu)造等比數(shù)列求通項公式;空間幾何的猜想.類比推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在空間直角坐標(biāo)系中,已知O (0,0,0) ,A(2,-1,3),B(2,1,1).

(1)求|AB|的長度;
(2)寫出A、B兩點經(jīng)此程序框圖執(zhí)行運算后的對應(yīng)點A0,B0的坐標(biāo),并說出點A0,B0在空間直角坐標(biāo)系o-xyz中的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用數(shù)學(xué)歸納法證明“時,從“”時,左邊應(yīng)增添的式子是(    ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

把正整數(shù)按右圖所示的規(guī)律排序,則從2013到2015的箭頭方向依次為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,反設(shè)正確的是(   )

A.假設(shè)三內(nèi)角都不大于60度
B.假設(shè)三內(nèi)角都大于60度
C.假設(shè)三內(nèi)角至多有一個大于60度
D.假設(shè)三內(nèi)角至多有兩個大于60度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,假設(shè)的內(nèi)容應(yīng)為( )

A.假設(shè)至少有一個鈍角 B.假設(shè)至少有兩個鈍角 
C.假設(shè)沒有一個鈍角 D.假設(shè)沒有一個鈍角或至少有兩個鈍角 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若執(zhí)行的程序框圖如圖所示,那么輸出的S= 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題“設(shè)為實數(shù),則方程至少有一個實根”時,要做的假設(shè)是(   )

A.方程沒有實根 B.方程至多有一個實根
C.方程至多有兩個實根 D.方程恰好有兩個實根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列推理是歸納推理的是(  )

A.A,B為定點,動點P滿足|PA|+|PB|=2a>|AB|,則P點的軌跡為橢圓
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項和Sn的表達(dá)式
C.由圓x2+y2=r2的面積πr2,猜想出橢圓+=1的面積S=πab
D.以上均不正確

查看答案和解析>>

同步練習(xí)冊答案