【題目】若大前提是:所有邊長都相等的凸多邊形是正多邊形,小前提是:菱形是所有邊長都相等的凸多邊形,結(jié)論是:菱形是正多邊形,那么這個演繹推理出錯在( )

A. 大前提出錯 B. 小前提出錯 C. 推理過程出錯 D. 沒有出錯

【答案】A

【解析】分析在使用三段論推理證明中如果命題是錯誤的,則可能是大前提錯誤,也可能是小前提錯誤,也可能是推理形式錯誤.

詳解大前提:所有邊長都相等的凸多邊形是正多邊形,

小前提:菱形是所有邊長都相等的凸多邊形,

結(jié)論:所有菱形是正多邊形,

根據(jù)正多邊形的定義可得“所有邊長都相等的凸多邊形是正多邊形錯誤,

所以大前提錯誤,故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題 “自然數(shù)a、b 、c中恰有一個偶數(shù)”時,需假設(shè)原命題不成立,下列假設(shè)正確的是(

Aa、b、c都是奇數(shù) Ba、b 、c都是偶數(shù)

C.ab、c中或都是奇數(shù)或至少有兩個偶數(shù) D.a、b 、c中至少有兩個偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),存在實數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓,點,是圓上任意一點,線段的垂直平分線和半徑相交于.

(1)求動點的軌跡的方程;

(2)設(shè)直線與()中軌跡相交于兩點,直線,的斜率分別為,,(其中),的面積為,以為直徑的圓的面積分別為,,若,恰好構(gòu)成等比數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于程序框圖的說法正確的是( )

①程序框圖只有一個入口,也只有一個出口;

②程序框圖的第一部分應(yīng)有一條從入口到出口的路徑通過它;

③程序框圖的循環(huán)可以是無盡循環(huán);

④程序框圖中判斷框內(nèi)的條件是唯一的.

A. ①②③ B. ②③ C. ①④ D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下有五個步驟:①撥號;②提起話筒(或免提功能);③開始通話或掛機(線路不通);④等復(fù)話方信號;⑤結(jié)束通話.試寫出一個打本地電話的算法________.(只寫編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,過原點的直線與其交于不同的兩點.

1)求直線斜率的取值范圍;

2)求線段的中點的軌跡的方程;

3)若直線與曲線只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)是否存在實數(shù),使恒成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次月考數(shù)學(xué)測驗結(jié)束后,四位同學(xué)對完答案后估計分?jǐn)?shù),甲:我沒有得滿分;乙:丙得了滿分;丙:丁得了滿分;丁:我沒有得滿分.以上四位同學(xué)中只有一個人說的是真話,只有一個人數(shù)學(xué)得到滿分,據(jù)此判斷,得了滿分的同學(xué)是_________

查看答案和解析>>

同步練習(xí)冊答案