已知橢圓數(shù)學(xué)公式的離心率為數(shù)學(xué)公式,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線(xiàn)x-y+2=0相切,A,B分別是橢圓的左右兩個(gè)頂點(diǎn),P為橢圓C上的動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P與A,B均不重合,設(shè)直線(xiàn)PA與PB的斜率分別為k1,k2,證明:k1•k2為定值.

(Ⅰ)解:由題意,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓的方程為x2+y2=b2,
∵直線(xiàn)x-y+2=0與圓相切,∴,即
,即
∵a2=b2+c2,
,c=1,
所以橢圓方程為
(Ⅱ)證明:設(shè)P(x0,y0)(y0≠0),,
,即,
∵直線(xiàn)PA與PB的斜率分別為k1,k2,
,,

∴k1•k2為定值
分析:(I)寫(xiě)出圓的方程,利用直線(xiàn)與圓相切的充要條件列出方程求出b的值,利用橢圓的離心率公式得到a,c的關(guān)系,再利用橢圓本身三個(gè)參數(shù)的關(guān)系求出a,c的值,將a,b的值代入橢圓的方程即可.
(II)設(shè)出P的坐標(biāo),將其代入橢圓的方程得到P的坐標(biāo)的關(guān)系,寫(xiě)出A,B的坐標(biāo),利用兩點(diǎn)連線(xiàn)的斜率公式求出
k1,k2,將P的坐標(biāo)的關(guān)系代入k1k2化簡(jiǎn)求出其值.
點(diǎn)評(píng):本題重點(diǎn)考查圓錐曲線(xiàn)的方程,考查直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系,直線(xiàn)的斜率,解題的關(guān)鍵是利用待定系數(shù)法求圓錐曲線(xiàn)的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線(xiàn)C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線(xiàn)和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線(xiàn)l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線(xiàn)l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線(xiàn)方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開(kāi)家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開(kāi)家前能得到報(bào)紙(稱(chēng)為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線(xiàn)l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線(xiàn)AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線(xiàn)PQ恰過(guò)原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊(cè)答案