【題目】設銳角三角形的內(nèi)角的對邊分別為,且.

(1)求的大小;

(2)求的取值范圍.

【答案】解:()由,根據(jù)正弦定理得,所以,由為銳角三角形得

為銳角三角形知,

所以

由此有,

所以, 的取值范圍為

【解析】試題分析:()解三角形,一般利用正余弦定理進行邊角轉化,本題求角,所以將邊化為角,由正弦定理得,所以,由為銳角三角形得. )先根據(jù)三角形三角關系將兩角化為一角:

.為銳角三角形知, ,

,即,所以.

由此有, 所以, 的取值范圍為.

試題解析:解:)由,根據(jù)正弦定理得

所以,由為銳角三角形得. 6

. 10

為銳角三角形知,

, ., 12

所以. 由此有,

所以, 的取值范圍為. 14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中為常數(shù).

(1)當函數(shù)的圖象在點處的切線的斜率為1時,求函數(shù)上的最小值; (2)若函數(shù)在區(qū)間上既有極大值又有極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)當為何值時, 最小? 此時的位置關系如何?

(2)當為何值時, 的夾角最小? 此時的位置關系如何?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點邊上的中線所在直線方程為,邊上的高所在直線的方程為.

(1)求的頂點的坐標;

(2)若圓經(jīng)過不同三點,且斜率為的直線與圓相切與點,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,已知點,圓

I)在極坐標系中,以極點為原點,極軸為軸正半軸建立平面直角坐標系,取相同的長度單位,求圓的直角坐標方程;

II)求點到圓圓心的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“珠算之父”程大為是我國明代偉大數(shù)學家,他的應用數(shù)學巨著《算法統(tǒng)綜》的問世,標志著我國的算法由籌算到珠算轉變的完成,程大位在《算法統(tǒng)綜》中常以詩歌的形式呈現(xiàn)數(shù)學問題,其中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明”(【注】三升九:3.9升,次第盛;盛米容積依次相差同一數(shù)量.)用你所學的數(shù)學知識求得中間兩節(jié)的容積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線與直線)交于,兩點.

1)當時,分別求在點處的切線方程;

2軸上是否存在點,使得當變動時,總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線與直線)交于,兩點.

1)當時,分別求在點處的切線方程;

2軸上是否存在點,使得當變動時,總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校課題組為了研究學生的數(shù)學成績與學生細心程度的關系,在本校隨機調(diào)查了100名學生進行研究.研究結果表明:在數(shù)學成績及格的60名學生中有45人比較細心,另外15人比較粗心;在數(shù)學成績不及格的40名學生中有10人比較細心,另外30人比較粗心.

(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;

數(shù)學成績及格

數(shù)學成績不及格

合計

比較細心

45

比較粗心

合計

60

100

(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數(shù)學成績與細心程度有關系?

參考數(shù)據(jù):獨立檢驗隨機變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

同步練習冊答案