A. | $g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$ | B. | $g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$ | ||
C. | $g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$ | D. | $g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$ |
分析 根據(jù)函數(shù)奇偶性的定義建立方程關(guān)系進行求解即可.
解答 解:∵f(x)都可以寫為一個奇函數(shù)g(x)與一個偶函數(shù)h(x)之和的形式,
∴f(x)=g(x)+h(x),
則f(-x)=g(-x)+h(-x)=-g(x)+h(x),
則g(x)=$\frac{f(x)-f(-x)}{2}$,h(x)=$\frac{f(x)+f(-x)}{2}$,
∵f(x)=2x+1,
∴g(x)=$\frac{f(x)-f(-x)}{2}$=$\frac{{2}^{x}-{2}^{-x}}{2}$,h(x)=$\frac{f(x)+f(-x)}{2}$=1+$\frac{{2}^{x}+{2}^{-x}}{2}$,
故選:B
點評 本題主要考查函數(shù)奇偶性的應用,根據(jù)函數(shù)奇偶性的性質(zhì),建立方程組關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ±3 | B. | $±\;2\sqrt{2}$ | C. | ±2 | D. | ±1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,3) | B. | (1,3) | C. | (2,3) | D. | (-∞,-2)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (10,0) | B. | (0,4) | C. | (-6,-4) | D. | (6,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com