【題目】在如圖所示的多面體中,底面四邊形是菱形,,,相交于,,在平面上的射影恰好是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:(1)證明線面垂直先證明線線垂直,EH⊥BD,AC⊥BD,∴BD⊥平面EACF,即BD⊥平面ACF;(2)建立空間坐標(biāo)系,求兩個平面的法向量,根據(jù)向量夾角的求法得到面面角.
解析:
(Ⅰ)取AO的中點H,連結(jié)EH,則EH⊥平面ABCD
∵BD在平面ABCD內(nèi),∴EH⊥BD
又菱形ABCD中,AC⊥BD 且EH∩AC=H,EH、AC在平面EACF內(nèi)
∴BD⊥平面EACF,即BD⊥平面ACF
(Ⅱ)由(Ⅰ)知EH⊥平面ABCD,以H為原點,如圖所示建立空間直角坐標(biāo)系H﹣xyz
∵EH⊥平面ABCD,∴∠EAH為AE與平面ABCD所成的角,
即∠EAH=45°,又菱形ABCD的邊長為4,則
各點坐標(biāo)分別為,
E(0,0,)
易知為平面ABCD的一個法向量,記=,=,=
∵EF∥AC,∴=
設(shè)平面DEF的一個法向量為(注意:此處可以用替代)
即 =,
令,則,∴
∴
平面DEF與平面ABCD所成角(銳角)的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年8月20日起,市交警支隊全面啟動路口秩序環(huán)境綜合治理,重點整治機(jī)動車不禮讓斑馬線和行人的行為,經(jīng)過一段時間的治理,從市交警隊數(shù)據(jù)庫中調(diào)取了20個路口近三個月的車輛違章數(shù)據(jù),經(jīng)統(tǒng)計得如圖所示的頻率分布直方圖,統(tǒng)計數(shù)據(jù)中凡違章車次超過30次的設(shè)為“重點關(guān)注路口”.
(1)現(xiàn)從“重點關(guān)注路口”中隨機(jī)抽取兩個路口安排交警去執(zhí)勤,求抽出來的路口的違章車次一個在,一個在中的概率;
(2)現(xiàn)從支隊派遣5位交警,每人選擇一個路口執(zhí)勤,每個路口至多1人,違章車次在的路口必須有交警去,違章車次在的不需要交警過去,設(shè)去“重點關(guān)注路口”的交警人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)求函數(shù)在的最小值;
(2)設(shè)是函數(shù)的兩個零點,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線是.
(1)求函數(shù)的極值;
(2)當(dāng)恒成立時,求實數(shù)的取值范圍(為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面平面,四邊形和四邊形都是正方形,且邊長為,是的中點.
(1)求證:直線平面;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 若f(x1)=f(x2),且x1<x2,關(guān)于下列命題:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com