【題目】下列各組函數(shù)是同一函數(shù)的是( )
A.與B.與
C.與D.與
【答案】AC
【解析】
根據(jù)同一函數(shù)的定義:如果兩個函數(shù)的定義域相同,并且對應(yīng)關(guān)系完全相同,這兩個函數(shù)是同一函數(shù).對四個選項逐一判斷即可.
選項A:兩個函數(shù)的定義域相同,并且對應(yīng)關(guān)系完全相同,因此函數(shù)是同一函數(shù);
選項B雖然的定義域都是非正實數(shù)集,但是的值域是非負(fù)實數(shù)集, 的值域為非正實數(shù)集,故兩個函數(shù)的對應(yīng)關(guān)系不一樣,所以這兩個函數(shù)不是同一函數(shù);
選項C:兩個函數(shù)的定義域為不等于1的實數(shù)集,對應(yīng)關(guān)系一樣,故兩個函數(shù)是同一函數(shù);
選項D:兩個函數(shù)的定義域都是實數(shù)集, 但是的值域是實數(shù)集, 的值域為非負(fù)實數(shù)集,故兩個函數(shù)的對應(yīng)關(guān)系不一樣,所以這兩個函數(shù)不是同一函數(shù);
故選:AC
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=logax(a>0,a≠1),設(shè)數(shù)列f(a1),f(a2),f(a3),…,f(an)…是首項為4,公差為2的等差數(shù)列.
(I)設(shè)a為常數(shù),求證:{an}成等比數(shù)列;
(II)設(shè)bn=anf(an),數(shù)列{bn}前n項和是Sn , 當(dāng)時,求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足,數(shù)列滿足.
(1)求數(shù)列、的通項公式;
(2),求數(shù)列的前項和;
(3)對任意的正整數(shù),是否存在正整數(shù),使得?若存在,請求出的所有值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當(dāng)>0時,<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機械廠欲從米,米的矩形鐵皮中裁剪出一個四邊形加工成某儀器的零件,裁剪要求如下:點分別在邊上,且,.設(shè),四邊形的面積為(單位:平方米).
(1)求關(guān)于的函數(shù)關(guān)系式,求出定義域;
(2)當(dāng)的長為何值時,裁剪出的四邊形的面積最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究某位學(xué)生的學(xué)習(xí)情況發(fā)現(xiàn):若這位學(xué)生剛學(xué)完的知識存留量記為1,則x天后的存留量;若在t(t>4)天時進(jìn)行第一次復(fù)習(xí),則此時知識存留量比未復(fù)習(xí)情況下增加一倍(復(fù)習(xí)時間忽略不計),其后存留量y2隨時間變化的曲線恰為直線的一部分,其斜率為(a<0),存留量隨時間變化的曲線如圖所示.當(dāng)進(jìn)行第一次復(fù)習(xí)后的存留量與不復(fù)習(xí)的存留量相差最大時,則稱此時刻為“二次復(fù)習(xí)最佳時機點”.
(1)若a=-1,t=5求“二次復(fù)習(xí)最佳時機點”;
(2)若出現(xiàn)了“二次復(fù)習(xí)最佳時機點”,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , Sn=2an﹣1,{bn}是等差數(shù)列,且b1=a1 , b4=a3 .
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若 ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com