【題目】已知定義在R上的可導函數f(x)的導函數為f'(x),滿足f'(x)<f(x),且f(x+3)為偶函數,f(6)=1,則不等式f(x)>ex的解集為( )
A.(﹣∞,0)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
【答案】A
【解析】解:設g(x)= ,則g′(x)= .
∵f′(x)<f(x),∴g′(x)<0.∴函數g(x)是R上的減函數,
∵函數f(x+3)是偶函數,
∴函數f(﹣x+3)=f(x+3),∴函數關于x=3對稱,∴f(0)=f(6)=1,
原不等式等價為g(x)>1,∴不等式f(x)<ex等價g(x)>1,即g(x)>g(0),
∵g(x)在R上單調遞減,∴x<0.
∴不等式f(x)>ex的解集為(﹣∞,0).
所以答案是:A.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.
科目:高中數學 來源: 題型:
【題目】已知函數,其中
(1)判斷并證明函數的奇偶性;
(2)判斷并證明函數在上的單調性;
(3)是否存在這樣的負實數,使對一切恒成立,若存在,試求出取值的集合;若不存在,說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學生會為了調查學生對2018年俄羅斯世界杯的關注是否與性別有關,抽樣調查100人,得到如下數據:
不關注 | 關注 | 總計 | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
總計 | 75 | 25 | 100 |
根據表中數據,通過計算統(tǒng)計量K2= ,并參考一下臨界數據:
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此認為“學生對2018年俄羅斯年世界杯的關注與性別有關”,則此結論出錯的概率不超過( )
A.0.10
B.0.05
C.0.025
D.0.01
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某手機廠商推出一次智能手機,現對500名該手機使用者(200名女性,300名男性)進行調查,對手機進行打分,打分的頻數分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數 | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數 | 45 | 75 | 90 | 60 | 30 |
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的方差大。ú挥嬎憔唧w值,給出結論即可);
(2)根據評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意取3名用戶,求3名用戶評分小于90分的人數的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1 .
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前項和,對任意,都有(為常數).
(1)當時,求;
(2)當時,
(。┣笞C:數列是等差數列;
(ⅱ)若對任意,必存在使得,已知,且,
求數列的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)已知不等式ax2-3x+6>4的解集為{x|x<1或x>b},
(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在考試測評中,常用難度曲線圖來檢測題目的質量,一般來說,全卷得分高的學生,在某道題目上的答對率也應較高,如果是某次數學測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標為分數段,縱坐標為該分數段的全體考生在第1、2問的平均難度,則下列說法正確的是( )
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學生數學成績的好與壞
C.分數在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標準差小于第2問的得分標準差
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com