等差數(shù)列{an}中,已知a4、a5分別是方程x2-8x+15=0的兩根,則S8=
 
分析:首先由韋達(dá)定理求得a4+a5,再用等差數(shù)列的性質(zhì)結(jié)合前n項(xiàng)和公式求得結(jié)果.
解答:解:由根與系數(shù)關(guān)系得a4+a5=8,∴S8=
8(a1+a8)
2
=
8(a4+a5)
2
=32

故答案是32
點(diǎn)評(píng):本題考查一元二次方程根與系數(shù)的關(guān)系和等差數(shù)列的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊(cè)答案