ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊的長(zhǎng)分別為a、bc,有下列兩個(gè)條件:(1)a、b、c成等差數(shù)列;(2)a、bc成等比數(shù)列,現(xiàn)給出三個(gè)結(jié)論:(1);(2);(3)。

請(qǐng)你選取給定的兩個(gè)條件中的一個(gè)條件為條件,三個(gè)結(jié)論中的兩個(gè)為結(jié)論,組建一個(gè)你認(rèn)為正確的命題,并證明之。

   (I)組建的命題為:已知_______________________________________________

求證:①__________________________________________

②__________________________________________

   (II)證明:

 

【答案】

【解析】可以組建命題一:△ABC中,若a、b、c成等差數(shù)列,求證:(1)0<B≤

   (2);

命題二:△ABC中,若a、b、c成等差數(shù)列求證:(1)0<B≤

   (2)1<

命題三:△ABC中,若a、b、c成等差數(shù)列,求證:(1)

   (2)1<

命題四:△ABC中,若a、b、c成等比數(shù)列,求證:(1)0<B≤

   (2)1<[來(lái)源:學(xué)。科。網(wǎng)]

下面給出命題一、二、三的證明:

   (1)∵a、b、c成等差數(shù)列∴2b=a+c,∴b=

且B∈(0,π),∴0<B≤

   (2)

   (3)

∵0<B≤ ∴ ∴ 

下面給出命題四的證明:

   (4)∵a、b、c成等比數(shù)列∴b2=a+c,

且B∈(0,π),∴0<B≤

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=
3
,A+C=2B
,則sinC=(  )
A、0B、2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a,b,c,給出下列命題:
①若sinBcosC>-cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號(hào)是
②③④
②③④
.(注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成等比數(shù)列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判斷此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,
m
=(-
3
,sinA),
n
=(cosA,1)
,且
m
n

(Ⅰ)求角A的大;
(Ⅱ)若a=2,△ABC的面積為
3
,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=
3
,B=60°,則sinC=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案