已知?jiǎng)訄A過(guò)定點(diǎn)M(0,1),且與直線L:y=-1相切..
(1)求動(dòng)圓圓心C的軌跡的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OA和OB的傾斜角分別
為α和β,當(dāng)α,β變化且α+β=θ(0<θ<π且θ≠
π
2
)
為定值時(shí),證明:直線AB恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
(1)由拋物線定義知C的軌跡是拋物線,且p=2,
∴動(dòng)圓圓心C的軌跡方程:x2=4y(6分)
(2)設(shè)點(diǎn)A(x1,
x12
4
),B(x2,
x22
4
)

則直線AB的方程為:y-
x21
4
=
x22
4
-
x21
4
x2-x1
(x-x1)
,
化簡(jiǎn)得:y=
x2+x1
4
x-
x1x2
4
(9分)
又因?yàn)?span mathtag="math" >tanα=
x21
4
x1
=
x1
4
,tanβ=
x22
4
x2
=
x2
4

由α+β=θ,得tanθ=tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
x1+x2
4
1-
x1x2
16

tanθ=
x1+x2
4
1-
x1x2
16

所以
x1x2
4
=4-
x1+x2
tanθ
(12分)
所以直線AB方程為y=
x2+x1
4
x-4+
x1x2
tanθ

y=
x2+x1
4
(x+
4
tanθ
)-4

所以直線AB過(guò)定點(diǎn)(-
4
tanθ
,-4)
.(15分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄A過(guò)定點(diǎn)M(0,1),且與直線L:y=-1相切.
(1)求動(dòng)圓圓心C的軌跡的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OA和OB的傾斜角分別
為α和β,當(dāng)α,β變化且α+β=θ(0<θ<π且θ≠
π2
)為定值時(shí),證明:直線AB恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知?jiǎng)訄A過(guò)定點(diǎn)P(0,1),且與定直線y=-1相切.
(1)求動(dòng)圓圓心的軌跡M的方程;
(2)設(shè)過(guò)點(diǎn)Q(0,-1)且以
a
=(-1,-k)
為方向向量的直線l與軌跡M相交于A、B兩點(diǎn).若∠APB為鈍角,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省紹興市上虞市高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知?jiǎng)訄A過(guò)定點(diǎn)M(0,1),且與直線L:y=-1相切..
(1)求動(dòng)圓圓心C的軌跡的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OA和OB的傾斜角分別
為α和β,當(dāng)α,β變化且α+β=θ為定值時(shí),證明:直線AB恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本題滿分14分)

已知?jiǎng)訄A過(guò)定點(diǎn)P(1,0)且與定直線相切,點(diǎn)C在上.

(Ⅰ)求動(dòng)圓圓心M的軌跡方程;

(Ⅱ)設(shè)過(guò)點(diǎn)P且斜率為的直線與曲線交于A、B兩點(diǎn).問(wèn)直線上是否存在點(diǎn)C ,使得是以為直角的直角三角形?如果存在,求出點(diǎn)C的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案