【題目】如圖是一個“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線的兩條互相垂直的弦(點在第二象限),且交于點,點軸上一點,,其中為銳角

(1)設線段的長為,將表示為關于的函數(shù)

(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時的大小

【答案】(1)(2)“蝴蝶形圖案”面積的最小值為,取最小值時.

【解析】

(1)過點軸于點,,中利用三角函數(shù)的定義可得,,即點的坐標為,代入拋物線的方程,可得關于的函數(shù).

(2)由題意結合圖形,可由逆時針旋轉得到,即可得到關于的函數(shù),進而可得“蝴蝶形圖案”面積關于的函數(shù),換元后利用配方法求其面積的最小值.

(1)過點軸于點,

,

:,

由此可得點的坐標為

是拋物線上的點,將其代入可得:

,即:

解得:

故:

表示為關于的函數(shù)為:

(2)根據(jù)(1)得: 表示為關于的函數(shù)為:

由題意可知:

可由逆時針旋轉得到,其與正半軸夾角為.

可由逆時針旋轉得到,其與正半軸夾角為.

可由逆時針旋轉得到,其與正半軸夾角為.

, ,

設“蝴蝶形圖案”面積為:

令:

為銳角

可得:

,

時, 即:

化簡為: (為銳角)解得:

綜上所述:“蝴蝶形圖案”面積的最小值為,取最小值時.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,軸上的點.

(1)當時,過點作直線相切,求切線的方程;

(2)存在過點且傾斜角互補的兩條直線,,若,分別交于,,四點,且的面積相等,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某民營企業(yè)生產AB兩種產品,根據(jù)市場調查與預測,A產品的利潤y與投資x成正比,其關系如圖甲,B產品的利潤y與投資x的算術平方根成正比,其關系如圖乙注:利潤與投資單位為萬元

分別將A,B兩種產品的利潤y表示為投資x的函數(shù)關系式;

該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產品的生產問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點作橫軸的垂線l,梯形OABC在直線l左側部分的面積即為t(h)內沙塵暴所經過的路程s(km)

(1)時,求s的值;

(2)st變化的規(guī)律用數(shù)學關系式表示出來;

(3)N城位于M地正南方向,且距M650km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列各題中,判斷pq的什么條件(請用“充分不必要條件”“必要不充分條件”“充要條件”“既不充分又不必要條件”回答):

(1)p:三角形是等腰三角形,q:三角形是等邊三角形;

(2)在一元二次方程中,有實數(shù)根,;

(3);

(4);

(5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列全稱量詞命題的真假:

(1)每一個末位是0的整數(shù)都是5的倍數(shù);

(2)線段垂直平分線上的點到這條線段兩個端點的距離相等;

(3)對任意負數(shù)的平方是正數(shù);

(4)梯形的對角線相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中:

①若函數(shù)的定義域為,則一定是偶函數(shù);

②若是定義域上奇函數(shù),,都有,則的圖像關于直線對稱;

③已知,是函數(shù)的定義域內的任意兩個值,且,若,則是定義域減函數(shù);

④已知是定義在上奇函數(shù),且也為奇函數(shù),則是以4為周期的周期函數(shù)。

其中真命題的有_____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假,并寫出這些命題的否定:

(1)平面直角坐標系下每條直線都與x軸相交;

(2)每個二次函數(shù)的圖象都是軸對稱圖形;

(3)存在一個三角形,它的內角和小于180°;

(4)存在一個四邊形,它的四個頂點不在同一個圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案