【題目】已知等差數(shù)列滿(mǎn)足,數(shù)列的前項(xiàng)和為,且滿(mǎn)足.

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和.

【答案】(1);(2.

【解析】試題分析:(1)設(shè)等差數(shù)列{an}的公差為d,利用等差中項(xiàng)的性質(zhì)及已知條件“a1+a2+a3=9、a2+a8=18”可得公差,進(jìn)而可得數(shù)列{an}的通項(xiàng);利用“bn+1=Sn+1﹣Sn”及“b1=2b1﹣2”,可得公比和首項(xiàng),進(jìn)而可得數(shù)列{bn}的通項(xiàng);

(2)利用,利用錯(cuò)位相減法及等比數(shù)列的求和公式即得結(jié)論.

試題解析:

解:(1)設(shè)等差數(shù)列的公差為,

,即,

,即

,即,

,

.

兩式相減,得.

.

數(shù)列是首項(xiàng)和公比均為的等比數(shù)列, .

數(shù)列的通項(xiàng)公式分別為.

2)由(1)知

,

兩式相減,得

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與直線(xiàn)都經(jīng)過(guò)點(diǎn).直線(xiàn)平行,且與橢圓交于兩點(diǎn),直線(xiàn)軸分別交于兩點(diǎn).

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,平面平面

為側(cè)棱的中點(diǎn),且.

(1)證明: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(其中

(1)若,討論函數(shù)的單調(diào)性;

(2)若,求證:函數(shù)有唯一的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知點(diǎn),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,過(guò)點(diǎn)作極坐標(biāo)方程為的直線(xiàn)的平行線(xiàn),分別交曲線(xiàn)兩點(diǎn).

1)寫(xiě)出曲線(xiàn)和直線(xiàn)的直角坐標(biāo)方程;

(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加書(shū)法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)

(1)能否由的把握認(rèn)為參加書(shū)法社團(tuán)和參加演講社團(tuán)有關(guān)?

(附:

當(dāng)時(shí),有的把握說(shuō)事件有關(guān);當(dāng),認(rèn)為事件是無(wú)關(guān)的)

(2)已知既參加書(shū)法社團(tuán)又參加演講社團(tuán)的名同學(xué)中,有名男同學(xué), , , , 名女同學(xué), , .現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機(jī)選人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】質(zhì)檢部門(mén)對(duì)某工廠(chǎng)甲、乙兩個(gè)車(chē)間生產(chǎn)的12個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車(chē)間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)20克的為合格.

(1)從甲、乙兩車(chē)間分別隨機(jī)抽取2個(gè)零件,求甲車(chē)間至少一個(gè)零件合格且乙車(chē)間至少一個(gè)零件合格的概率;

(2)質(zhì)檢部門(mén)從甲車(chē)間8個(gè)零件中隨機(jī)抽取4件進(jìn)行檢測(cè),若至少2件合格,檢測(cè)即可通過(guò),若至少3 件合格,檢測(cè)即為良好,求甲車(chē)間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;

(3)若從甲、乙兩車(chē)間12個(gè)零件中隨機(jī)抽取2個(gè)零件,用表示乙車(chē)間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了準(zhǔn)確把握市場(chǎng),做好產(chǎn)品計(jì)劃,特對(duì)某產(chǎn)品做了市場(chǎng)調(diào)查:先銷(xiāo)售該產(chǎn)品50天,統(tǒng)計(jì)發(fā)現(xiàn)每天的銷(xiāo)售量分布在內(nèi),且銷(xiāo)售量的分布頻率

.

(Ⅰ)求的值.

(Ⅱ)若銷(xiāo)售量大于等于80,則稱(chēng)該日暢銷(xiāo),其余為滯銷(xiāo),根據(jù)是否暢銷(xiāo)從這50天中用分層抽樣的方法隨機(jī)抽取5天,再?gòu)倪@5天中隨機(jī)抽取2天,求這2天中恰有1天是暢銷(xiāo)日的概率(將頻率視為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r(shí)期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿(mǎn)足祖暅原理的兩個(gè)幾何體為(  )

A. ①② B. ①③

C. ②④ D. ①④

查看答案和解析>>

同步練習(xí)冊(cè)答案