如圖,在四棱錐P-ABCD中,則面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的大。
(Ⅲ)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請說明理由.

【答案】分析:法一:(Ⅰ)證明直線PO⊥平面ABCD,因為平面PAD⊥底面ABCD,只需證明面PAD內(nèi)的直線PO垂直這兩個平面的交線即可即;
(Ⅱ)連接BO,說明∠PBC是異面直線PB與CD所成的角,然后解三角形,求異面直線PD與CD所成角的大;
(Ⅲ)線段AD上存在點Q,設(shè)QD=x,利用等體積方法,求出比值.
法二:建立空間直角坐標系,求出向量
利用向量數(shù)量積解答(Ⅱ);利用平面的法向量和數(shù)量積解答(Ⅲ)即可.
解答:解:(Ⅰ)證明:在△PAD中,PA=PD,O為AD的中點,所以PO⊥AD
又側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD
所以PO⊥平面ABCD.

(Ⅱ)連接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC=2有OD∥BC
且OD=BC,所以四邊形OBCD是平行四邊形,所以O(shè)B∥DC
由(Ⅰ)知PO⊥OB,∠PBC是銳角,
所以∠PBC是異面直線PB與CD所成的角
因為AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以O(shè)B=
在Rt△AOP中  因為AP=AO=1,所以O(shè)P=1
在Rt△AOP中tan∠PBC=
所以:異面直線PB與CD所成角的大小

(Ⅲ)假設(shè)存在點Q,使得它到平面PCD的距離為
設(shè)QD=x,則,由(Ⅱ)得CD=OB=,
在Rt△POC中,,
所以PC=CD=DP,,
由Vp-DQC=VQ-PCD,得x=,所以存在點Q滿足題意,此時

解法二:
(Ⅰ)同解法一.
(Ⅱ)以O(shè)為坐標原點,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標系O-xyz,
依題意,易得A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以異面直線PB與CD所成的角是arccos,

(Ⅲ)假設(shè)存在點Q,使得它到平面PCD的距離為,
由(Ⅱ)知
設(shè)平面PCD的法向量為n=(x,y,z).
所以即x=y=z,
取x=1,得平面PCD的一個法向量為=(1,1,1).
設(shè),由,得,
解y=-或y=(舍去),
此時,所以存在點Q滿足題意,此時
點評:本題主要考查直線與平面位置關(guān)系、異面直線所成角、點到平面的距離等基本知識,考查空間想象能力、邏輯思維能力和運算能力.
第一問就建立坐標系的就會導致錯誤.再者就是線與線所成角應(yīng)該在才可
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案