已知圓C1:(x+1)2+y2=1,圓C2與圓C1外切,且與直線x=3切于點(3,1),則圓C2的方程為
(x-
7
5
2+y2=
64
25
(x-
7
5
2+y2=
64
25
分析:設(shè)出圓C2的方程,利用圓C1:(x+1)2+y2=1,圓C2與圓C1外切,求出圓心坐標,即可得出結(jié)論.
解答:解:圓C2與直線x=3切于點(3,1),則圓心縱坐標為1
設(shè)所求圓方程為(x-a)2+(y-1)2=(a-3)2,
∵圓C1:(x+1)2+y2=1,圓C2與圓C1外切,
(a+1)2+1
=3-a+1

a=
7
5

∴圓C2的方程為(x-
7
5
2+y2=
64
25

故答案為:(x-
7
5
2+y2=
64
25
點評:本題考查圓的方程,考查圓與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y-1=0對稱,則圓C2的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓c1:(x+1)2+y2=8,點c2(1,0),點Q在圓C1上運動,QC2的垂直一部分線交QC1于點P.
(I)求動點P的軌跡W的方程;
(II)過點S(0,-
13
)且斜率為k的動直線l交曲線W于A、B兩點,在y軸上是否存在定點D,使以AB為直徑的圓恒過這個點?若存在,求出D的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x+1)2+y2=8,點C2(1,0),點Q在圓C1上運動,QC2的垂直平分線交QC1于點P.
(Ⅰ) 求動點P的軌跡W的方程;
(Ⅱ) 設(shè)M,N是曲線W上的兩個不同點,且點M在第一象限,點N在第三象限,若
OM
+2
ON
=2
OC1
,O為坐標原點,求直線MN的斜率k;
(Ⅲ)過點S(0,-
1
3
)
且斜率為k的動直線l交曲線W于A,B兩點,在y軸上是否存在定點D,使以AB為直徑的圓恒過這個點?若存在,求出D的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x-1)2+y2=1;圓C2:x2+(y+2)2=1,則圓C1與C2的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y-2=0對稱;
(1)求圓C2的方程,
(2)過點(2,0)作圓C2的切線l,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案