(本小題滿分10分)選修41:幾何證明選講
如圖,相交于A、B兩點,AB是的直徑,過A點作的切線交于點E,并與BO1的延長線交于點P,PB分別與交于C,D兩點.
求證:(1)PA·PD=PE·PC; (2)AD=AE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形是☉的內(nèi)接四邊形,不經(jīng)過點,平分,經(jīng)過點的直線分別交的延長線于點,且,證明:

(1);
(2)是☉的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,A,B,C,D四點在同一圓上,的延長線交于點,點的延長線上.

(Ⅰ)若,求的值;
(Ⅱ)若,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4—1: 幾何證明選講
如圖,直線經(jīng)過⊙O上一點,且,,⊙O交直線.

(1)求證:直線是⊙O的切線;
(2)若⊙O的半徑為3,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A,B,C,D四點在同一圓上,AD的延長線與BC的延長線交于E點,且EC=ED.

(I)證明:CD//AB;
(II)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點共圓. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
某設(shè)計部門承接一產(chǎn)品包裝盒的設(shè)計(如圖所示),客戶除了要求、邊的長分別為外,還特別要求包裝盒必需滿足:①平面平面;②平面與平面所成的二面角不小于;③包裝盒的體積盡可能大。
若設(shè)計部門設(shè)計出的樣品滿足:均為直角且,矩形的一邊長為,請你判斷該包裝盒的設(shè)計是否能符合客戶的要求?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4—1:幾何證明選講(10分):
如圖:如圖E、F、G、H為凸四邊形ABCD中AC、BD、AD、DC的中點,∠ABC=∠ADC。

(1)求證:∠ADC=∠GEH;       (3分)
(2)求證:E、F、G、H四點共圓; (4分)
(3)求證:∠AEF=∠ACB-∠ACD  (3分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

曲線 (為參數(shù))與坐標(biāo)軸的交點是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,現(xiàn)在要在一塊半徑為1m.圓心角為60°的扇形紙板AOB上剪出一個平行四邊形MNPQ,使點PAB弧上,點QOA上,點M,NOB上,設(shè)∠BOPθ,YMNPQ的面積為S
(1)求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值及相應(yīng)θ的值
1.  
2.   

查看答案和解析>>

同步練習(xí)冊答案