函數(shù)f(x)=xlnx(x>0)的單調遞增區(qū)間是
 
分析:求出f(x)的導函數(shù),令導函數(shù)大于0列出關于x的不等式,求出不等式的解集即可得到x的范圍即為函數(shù)的單調遞增區(qū)間.
解答:解:由函數(shù)f(x)=xlnx得:f(x)=lnx+1,
令f′(x)=lnx+1>0即lnx>-1=ln
1
e
,根據(jù)e>1得到此對數(shù)函數(shù)為增函數(shù),
所以得到x>
1
e
,即為函數(shù)的單調遞增區(qū)間.
故答案為:(
1
e
,+∞)
點評:此題考查學生會利用導函數(shù)的正負得到函數(shù)的單調區(qū)間,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xln|x|的圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xln(1+x)-a(x+1),其中a為實常數(shù).
(1)當x∈[1,+∞)時,f′(x)>0恒成立,求a的取值范圍;
(2)求函數(shù)g(x)=f′(x)-
ax1+x
的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xln (x+2)-1的圖象與x軸的交點個數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=xln(ex+1)-
12
x2+3,x∈[-t,t]
(t>0),若函數(shù)f(x)的最大值是M,最小值是m,則M+m=
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•孝感模擬)已知函數(shù)f(x)=xln x.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)k為正常數(shù),設g(x)=f(x)+f(k-x),求函數(shù)g(x)的最小值;
(3)若a>0,b>0證明:f(a)+(a+b)ln2≥f(a+b)-f(b)

查看答案和解析>>

同步練習冊答案