【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間.
(2)試問:是否存在實(shí)數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,請說明理由.
【答案】(1)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為 (2)存在實(shí)數(shù),使得對恒成立
【解析】
(1)當(dāng)時(shí),得,求得,進(jìn)而求解函數(shù)的單調(diào)區(qū)間;
(2)假設(shè)存在實(shí)數(shù),使得對恒成立,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,分類討論,即可求解。
(1)當(dāng)時(shí),,,
當(dāng)時(shí),;
當(dāng)時(shí),.
故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2),.
假設(shè)存在實(shí)數(shù),使得對恒成立.
當(dāng)時(shí),對恒成立,則在上單調(diào)遞減,
從而,又,則.
當(dāng)時(shí),對恒成立,則在上單調(diào)遞增,
從而,又,所以.
當(dāng)時(shí),令,得,
若,;若,.
從而,則.
令,則,易知在上單調(diào)遞增,
則,從而不可能成立.
綜上,存在實(shí)數(shù),使得對恒成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn)且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】超市為了防止轉(zhuǎn)基因產(chǎn)品影響民眾的身體健康,要求產(chǎn)品在進(jìn)入超市前必須進(jìn)行兩輪轉(zhuǎn)基因檢測,只有兩輪都合格才能銷售,否則不能銷售.已知某產(chǎn)品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為,兩輪檢測是否合格相互沒有影響.
(1)求該產(chǎn)品不能銷售的概率;
(2)如果產(chǎn)品可以銷售,則每件產(chǎn)品可獲利50元;如果產(chǎn)品不能銷售,則每件產(chǎn)品虧損60元.已知一箱中有產(chǎn)品4件,記一箱產(chǎn)品獲利元,求的分布列,并求出均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)又本與焦點(diǎn)坐標(biāo)為,離心率為的曲線相交于兩點(diǎn)(為曲線的坐標(biāo)原點(diǎn)),且.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)證明:和都為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當(dāng)三棱錐的體積最大時(shí),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線,的直角坐標(biāo)方程;
(2)判斷曲線,是否相交,若相交,請求出交點(diǎn)間的距離;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】排成一排的10名學(xué)生生日的月份均不相同.有名教師,依次挑選這些學(xué)生參加個(gè)興趣小組,每名學(xué)生恰被一名教師挑選,且保持學(xué)生的排序不變,每名教師挑出的學(xué)生必須滿足生日的月份是逐漸增加或逐漸減少的(挑選一名或兩名學(xué)生也認(rèn)為是逐漸增加或逐漸減少的),每名教師盡可能多地選學(xué)生.對于學(xué)生所有可能的排序,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com