|
|
設(shè)a、b是實(shí)數(shù),則“a>b”是“a2>b2”的
|
[ ] |
A. |
充分而不必要條件
|
B. |
必要而不必要條件
|
C. |
充分必要條件
|
D. |
既不充分不必要條件
|
|
|
答案:D
解析:
|
當(dāng)a·b<0時(shí),由a>b推不出a2>b2,反之也不成立.
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知集合M={-1,0,1},N={0,1,2},則M∪N=
|
[ ] |
A. |
{-1,0,1}
|
B. |
{-1,0,1,2}
|
C. |
{-1,0,2}
|
D. |
{0,1}
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知曲線г上的點(diǎn)到點(diǎn)F(0,1)的距離比它到直線y=-3的距離小2.
(1)求曲線г的方程;
(2)曲線г在點(diǎn)P處的切線l與x軸交于點(diǎn)A.直線y=3分別與直線l及y軸交于點(diǎn)M,N,以MN為直徑作圓C,過點(diǎn)A作圓C的切線,切點(diǎn)為B,試探究:當(dāng)點(diǎn)P在曲線г上運(yùn)動(dòng)(點(diǎn)P與原點(diǎn)不重合)時(shí),線段AB的長度是否發(fā)生變化?證明你的結(jié)論.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)=cosx(sinx+cosx)-.
(1)若,且,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知定義在R上的函數(shù)f(x)=|x+1|+|x-2|的最小值為a.
(Ⅰ)求a的值;
(Ⅱ)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)雙曲線C的兩個(gè)焦點(diǎn)為,,一個(gè)頂點(diǎn)式(1,0),則C的方程為
________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,E、F分別為A1C1、BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E-ABC的體積.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)函數(shù)f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在區(qū)間上具有單調(diào)性,且,則f(x)的最小正周期為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)F1、F2分別為雙曲線的左、右焦點(diǎn),若在雙曲線右支上存在點(diǎn)P,滿足PF2=F1F2,且F2到直線PF1的距離等于雙曲線的實(shí)軸長,則該雙曲線的漸近線方程為________.
|
|
|
查看答案和解析>>