【題目】已知函數(shù)(為常函數(shù))是奇函數(shù).
(1)判斷函數(shù)在上的單調性,并用定義法證明你的結論;
(2)若對于區(qū)間上的任意值,使得不等式恒成立,求實數(shù)的取值范圍.
【答案】(1) 見解析(2)
【解析】試題分析:(1)根據(jù)奇函數(shù)定義可得,再根據(jù)為奇函數(shù),得在上為單調減函數(shù),最后根據(jù)單調性定義進行證明(2)設,則不等式恒成立轉化為,再根據(jù)在上單調遞減得,即得實數(shù)的取值范圍.
試題解析:(1)由條件可得,即
化簡得,從而得:由題意舍去,所以
即
在上為單調減函數(shù)
證明如下:設,則
因為,所以, , ;所以可得
,所以,即;所以函數(shù)在上為單調減函數(shù)
(2)設,由(1)得在上單調減函數(shù),
所以在上單調遞減;所以在上的最大值為
由題意知在上的最大值為,所以
科目:高中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉過程中的一個圖形,給出以下四個命題:①平面;②平面平面;③動點在平面上的射影在線段上;④異面直線與不可能垂直. 其中正確命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),( )是偶函數(shù).
(1)求的值;
(2)設函數(shù),其中.若函數(shù)與的圖象有且只有一個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)當時,證明:函數(shù)的零點與函數(shù)的零點之和小于3;
(2)若對任意, , ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知方程.
(Ⅰ)若此方程表示圓,求的取值范圍;
(Ⅱ)若(Ⅰ)中的圓與直線相交于, 兩點,且(為坐標原點),求;
(Ⅲ)在(Ⅱ)的條件下,求以為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,圓,點,點是圓上的動點,線段的垂直平分線交線段于點,設分別為點的橫坐標,定義函數(shù),給出下列結論:
①;②是偶函數(shù);③在定義域上是增函數(shù);
④圖象的兩個端點關于圓心對稱;
⑤動點到兩定點的距離和是定值.
其中正確的是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱函數(shù)的一個上界.已知函數(shù), .
(1)若函數(shù)為奇函數(shù),求實數(shù)的值;
(2)在第(1)的條件下,求函數(shù)在區(qū)間上的所有上界構成的集合;
(3)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知非空集合A、B滿足以下四個條件:
①A∪B={1,2,3,4,5,6,7};②A∩B=;③A中的元素個數(shù)不是A中的元素;④B中的元素個數(shù)不是B中的元素.
若集合A含有2個元素,則滿足條件的A有個.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com