【題目】用符號“”或“”填空:
(1)設(shè)A為所有亞洲國家組成的集合,則中國______________A,美國__________A,印度____________A,英國_____________A;
(2)若,則-1_____________A;
(3)若,則3________________B;
(4)若,則8_______________C,9.1____________C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)為的的拋物線:()與圓心在坐標(biāo)原點(diǎn),半徑為的交于,兩點(diǎn),且,,其中,,均為正實(shí)數(shù).
(1)求拋物線及的方程;
(2)設(shè)點(diǎn)為劣弧上任意一點(diǎn),過作的切線交拋物線于,兩點(diǎn),過,的直線,均于拋物線相切,且兩直線交于點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間上的最大值和最小值及相應(yīng)的x值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓過坐標(biāo)原點(diǎn)且圓心在曲線 上.
(1)若圓分別與軸、軸交于點(diǎn)(不同于原點(diǎn)),求證:的面積為定值;
(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;
(3)點(diǎn)在直線上,過點(diǎn)引圓(題(2))的兩條切線,切點(diǎn)為,求證:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是
A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面底面ABCD,底面ABCD為直角梯形,,,,,E,F分別為AD,PC的中點(diǎn).
Ⅰ求證:平面BEF;
Ⅱ若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),且的定義域?yàn)?/span>,.
(1)求實(shí)數(shù)的值,使函數(shù)為奇函數(shù);
(2)在(1)的條件下,令,求使方程,有解的實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,不等式對于任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=(x﹣1)2﹣1的圖象如圖所示,
(1)請補(bǔ)全函數(shù)f(x)的圖象并寫出它的單調(diào)區(qū)間.
(2)根據(jù)圖形寫出函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為邊長為2的菱形,,,面面,點(diǎn)為棱的中點(diǎn).
(1)在棱上是否存在一點(diǎn),使得面,并說明理由;
(2)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com