(本小題滿分12分)
有4張面值相同的債券,其中有2張中獎債券.
(1)有放回地從債券中任取2次,每次取出1張,計算取出的2張都是中獎債券的概率.
(2)無放回地從債券中任取2次,每次取出1張,計算取出的2張中至少有1張是中獎債券的概率.
(1);(2).
本試題主要是考查了有放回的概率和不放回的概率的求解的綜合運(yùn)用。
(1)有放回的從債券中任取2此,那么共有16種結(jié)果,且每一種結(jié)果是等可能的,其中2張都是中獎債券的有4種,利用古典概型可知結(jié)論。
(2)無返回的任取兩次,不同的結(jié)果為12種,且每一種結(jié)果是等可能的,那么其中2張都是中將債券的有4種結(jié)果,,那么利用古典概型改了可知結(jié)論。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙兩隊進(jìn)行排球決賽.現(xiàn)在的情形是甲隊只要再贏一局就獲冠軍,乙隊需要再贏兩局才能得冠軍.若兩隊勝每局的概率相同,則甲隊獲得冠軍的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,長方形的四個頂點為,曲線經(jīng)過點.現(xiàn)將一質(zhì)點隨機(jī)投入長方形中,則質(zhì)點落在圖中陰影區(qū)域的概率是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個壇子里有編號為1,2,…,12的12個大小相同的球,其中1到6號球是紅球,其余的是黑球,若從中任取兩個球,在取到的都是紅球的前提下,且至少有1個球的號碼是偶數(shù)的概率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)某商場舉行抽獎活動,從裝有編號0,1,2,3四個球的抽獎箱中,每次取出后放回,連續(xù)取兩次,取出的兩個小球號碼相加之和等于5中一等獎,等于4中二等獎,等于3中三等獎。
(1)求中二等獎的概率;
(2)求未中獎的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從甲、乙、丙三人中任選兩名代表,甲被選中的概率為( )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知盒中裝有僅顏色不同的玻璃球6個,其中紅球2個、黑球3個、白球1個.
(1)從中任取1個球, 求取得紅球或黑球的概率;
(2)從中一次取2個不同的球,試列出所有基本事件;并求至少有一個是紅球概率。
(3)從中取2次,每次取1個球,在放回的條件下求至少有一個是紅球概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列概率模型中,古典概型的個數(shù)為(  )
(1)從區(qū)間[1,10]內(nèi)任取一個數(shù),求取到1的概率;
(2)從1,2,…,9,10中任取一個整數(shù),求取到1的概率;
(3)向一個正方形ABCD內(nèi)任意投一點P,求點P剛好與點A重合的概率;
(4)向上拋擲一枚質(zhì)地不均勻的硬幣,求出現(xiàn)反面朝上的概率.
A.1           B.2
C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙2人獨立解答某道題,解答正確的概率分別為,則甲、乙至少有1人解答正確的概率是
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案