【題目】在平面直角坐標系內(nèi),動點到定點的距離與到定直線的距離之比為
(1)求動點的軌跡的方程;
(2)若軌跡上的動點到定點的距離的最小值為1,求的值;
(3)設(shè)點、是軌跡上兩個動點,直線、與軌跡的另一交點分別為、,且直線、的斜率之積等于,問四邊形的面積是否為定值?請說明理由
【答案】(1);(2);(3)是定值,面積
【解析】
(1)由兩點間距離公式和點到直線距離公式即可求出動點的軌跡的方程;
(2)利用兩點間距離公式能求出.討論在和,取得最小值為1時,其對應的是否在,即可得出答案.
(3)設(shè), ,由,得,由點,在橢圓上,得,由此利用點到直線的距離公式、橢圓的對稱性,結(jié)合已知條件能即可求出出四邊形面積的定值.
(1)設(shè)
∵動點到定點的距離與到定直線的距離之比為
∴
化簡得:
動點的軌跡的方程為:
(2)設(shè)
由兩點間距離公式得:
①當,即時,
時,取得最小值 解得: 即
此時 ,故舍去.
②當 即:時
時, 取得最小值 解得:,(舍去)
綜上所述: .
(3)設(shè),
整理可得:
點,在橢圓上
,
化簡可得:
直線的直線方程為
點到直線的距離
的面積:
四邊形的面積為定值
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),其中e為自然對數(shù)的底數(shù).
(1)當a=0時,求函數(shù)f (x)的單調(diào)減區(qū)間;
(2)已知函數(shù)f (x)的導函數(shù)f (x)有三個零點x1,x2,x3(x1 x2 x3).①求a的取值范圍;②若m1,m2(m1 m2)是函數(shù)f (x)的兩個零點,證明:x1m1x1 1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在定義域內(nèi)某個區(qū)間,使得在上的值域也是,則稱函數(shù)在定義域上封閉.如果函數(shù)在上封閉,那么實數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,準線方程為,直線過定點()且與拋物線交于、兩點,為坐標原點.
(1)求拋物線的方程;
(2)是否為定值,若是,求出這個定值;若不是,請說明理由;
(3)當時,設(shè),記,求的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數(shù)為k(k>0).現(xiàn)已知相距18km的A,B兩家化工廠(污染源)的污染強度分別為a,b,它們連線上任意一點C處的污染指數(shù)y等于兩化工廠對該處的污染指數(shù)之和.設(shè)AC=x(km).
(1)試將y表示為x的函數(shù);
(2)若a=1,且x=6時,y取得最小值,試求b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年諾貝爾生理學或醫(yī)學獎獲得者威廉·凱林(WilliamG.KaelinJr)在研究腎癌的抑制劑過程中使用的輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內(nèi)勻速滴下液體(滴管內(nèi)液體忽略不計),設(shè)輸液開始后分鐘,瓶內(nèi)液面與進氣管的距離為厘米,已知當時,.如果瓶內(nèi)的藥液恰好分鐘滴完.則函數(shù)的圖像為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節(jié)大豆新品種一天內(nèi)發(fā)芽數(shù)之間的關(guān)系進行了分析研究,他們分別記錄了12月1日至12月6日每天晝夜最高、最低的溫度(如圖甲),以及實驗室每天每100顆種子中的發(fā)芽數(shù)情況(如圖乙),得到如下資料:
最高溫度最低溫度
甲
乙
(1)請畫出發(fā)芽數(shù)y與溫差x的散點圖;
(2)若建立發(fā)芽數(shù)y與溫差x之間的線性回歸模型,請用相關(guān)系數(shù)說明建立模型的合理性;
(3)①求出發(fā)芽數(shù)y與溫差x之間的回歸方程(系數(shù)精確到0.01);
②若12月7日的晝夜溫差為,通過建立的y關(guān)于x的回歸方程,估計該實驗室12月7日當天100顆種子的發(fā)芽數(shù).
參考數(shù)據(jù):.
參考公式:
相關(guān)系數(shù):(當時,具有較強的相關(guān)關(guān)系).
回歸方程中斜率和截距計算公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com