【題目】已知是實(shí)數(shù),函數(shù).

1)若,求的值及曲線在點(diǎn)處的切線方程;

2)求函數(shù)在區(qū)間上的最小值.

【答案】1;(2.

【解析】

1)對(duì)函數(shù)求導(dǎo),由求出的值,可得出函數(shù)的解析式,再求出的值,最后利用點(diǎn)斜式寫(xiě)出所求切線的方程;

2)對(duì)函數(shù)的求導(dǎo),解方程得出,考查與區(qū)間的位置關(guān)系,分析函數(shù)在區(qū)間上的單調(diào)性,可得出函數(shù)在區(qū)間上的最小值.

1,,則,

,則,

因此,曲線在點(diǎn)處的切線方程為,即;

2,令,得,.

①當(dāng)時(shí),即當(dāng)時(shí),對(duì)任意的,

此時(shí),函數(shù)在區(qū)間上單調(diào)遞增,所以;

②當(dāng)時(shí),即當(dāng)時(shí),

,則;若時(shí),.

此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以,函數(shù)處取得極小值,亦即最小值,即;

③當(dāng)時(shí),即當(dāng)時(shí),對(duì)任意的,.

此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,則.

綜上所述:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017湖北部分重點(diǎn)中學(xué)高三聯(lián)考)從編號(hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,則樣本中最大的編號(hào)應(yīng)該為(  )

A. 483 B. 482

C. 481 D. 480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AEAB,且AEBP

(1)求平面PCD與平面ABPE所成的二面角的余弦值;

(2)線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線為參數(shù))和圓的極坐標(biāo)方程:

1)分別求直線和圓的普通方程并判斷直線與圓的位置關(guān)系;

2)已知點(diǎn),若直線與圓相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,己知是橢圓的左、右焦點(diǎn),直線經(jīng)過(guò)左焦點(diǎn),且與 橢圓兩點(diǎn),的周長(zhǎng)為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在直線,使得為等腰直角三角形?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體中, ACBC,四邊形ABED是正方形,平面ABED⊥平面ABC,點(diǎn)F,G,H分別為BD,EC,BE的中點(diǎn),求證:

(1) BC⊥平面ACD

(2)平面HGF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓E: (a>b>0)的離心率為,焦距為2.


(1)求橢圓E的方程;

(2)如圖,動(dòng)直線l:y=k1x-交橢圓E于A,B兩點(diǎn),C是橢圓E上一點(diǎn),直線OC的斜率為k2,且k1k2.M是線段OC延長(zhǎng)線上一點(diǎn),且|MC|∶|AB|=2∶3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T.求∠SOT的最大值,并求取得最大值時(shí)直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OB、CD是兩條互相平行的筆直公路,且均與筆直公路OC垂直(公路寬度忽略不計(jì)),半徑OC1千米的扇形COA為該市某一景點(diǎn)區(qū)域,當(dāng)?shù)卣疄榫徑饩包c(diǎn)周邊的交通壓力,欲在圓弧AC上新增一個(gè)入口E(點(diǎn)E不與A、C重合),并在E點(diǎn)建一段與圓弧相切(E為切點(diǎn))的筆直公路與OB、CD分別交于M、N.當(dāng)公路建成后,計(jì)劃將所圍成的區(qū)域在景點(diǎn)之外的部分建成停車場(chǎng)(圖中陰影部分),設(shè)∠CONθ,停車場(chǎng)面積為S平方千米.

1)求函數(shù)Sfθ)的解析式,并寫(xiě)出函數(shù)的定義域;

2)為對(duì)該計(jì)劃進(jìn)行可行性研究,需要預(yù)知所建停車場(chǎng)至少有多少面積,請(qǐng)計(jì)算當(dāng)θ為何值時(shí),S有最小值,并求出該最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案