【題目】(2017湖北部分重點(diǎn)中學(xué)高三聯(lián)考)從編號(hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,則樣本中最大的編號(hào)應(yīng)該為(  )

A. 483 B. 482

C. 481 D. 480

【答案】B

【解析】間隔為32-7=25,所以每組的容量為25,共有20組,所以樣本中最大的編號(hào)應(yīng)該為7+19×25=482.故選B.

點(diǎn)睛: 假設(shè)要從容量為N的總體中抽取容量為n的樣本:(1)編號(hào):先將總體的N個(gè)個(gè)體編號(hào);

(2)分段:確定段數(shù),對(duì)編號(hào)進(jìn)行分段,當(dāng)(n是樣本容量)是整數(shù)時(shí),取k=;(3)確定首個(gè)個(gè)體:在第1段用簡(jiǎn)單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤k);(4)獲取樣本:按照一定的規(guī)則抽取樣本,通常是將l加上間隔k得到第2個(gè)個(gè)體編號(hào)l+k ,再加k得到第3個(gè)個(gè)體編號(hào)l+2k,依次進(jìn)行下去,直到獲取整個(gè)樣本率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段,為垂足.,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),

(1)求點(diǎn)的軌跡的方程;

(2) 若,直線交曲線、兩點(diǎn)(點(diǎn)、與點(diǎn)不重合),且滿足.為坐標(biāo)原點(diǎn),點(diǎn)滿足,證明直線過(guò)定點(diǎn),并求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)為正數(shù)的等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項(xiàng)am、an使得 ,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某煤礦發(fā)生透水事故時(shí),作業(yè)區(qū)有若干人員被困.救援隊(duì)從入口進(jìn)入之后有L1,L2兩條巷道通往作業(yè)區(qū)(如下圖),L1巷道有A1,A2,A3三個(gè)易堵塞點(diǎn),各點(diǎn)被堵塞的概率都是;L2巷道有B1,B2兩個(gè)易堵塞點(diǎn),被堵塞的概率分別為.

(1)求L1巷道中,三個(gè)易堵塞點(diǎn)最多有一個(gè)被堵塞的概率;

(2)若L2巷道中堵塞點(diǎn)個(gè)數(shù)為X,求X的分布列及均值E(X),并按照“平均堵塞點(diǎn)少的巷道是較好的搶險(xiǎn)路線”的標(biāo)準(zhǔn),請(qǐng)你幫助救援隊(duì)選擇一條搶險(xiǎn)路線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:)的離心率為,且經(jīng)過(guò)點(diǎn),四邊形的四個(gè)頂點(diǎn)都在橢圓上,對(duì)角線所在直線的斜率為,且.

(1)求橢圓C的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) ,橢圓 )的離心率為 , 是橢圓 的右焦點(diǎn),直線 的斜率為 為坐標(biāo)原點(diǎn).

(1)求 的方程;

(2)設(shè)過(guò)點(diǎn) 的動(dòng)直線 相交于 , 兩點(diǎn),當(dāng) 的面積最大時(shí),求 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=sin(x+ )+sin(x﹣ )+cosx+a(a∈R,a是常數(shù)).
(1)求函數(shù)f(x)的最小正周期;
(2)若a=0,作出y=f(x)在[﹣π,π]上的圖象;
(3)若x∈[﹣ ]時(shí),f(x)的最大值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的各項(xiàng)均為正數(shù),a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當(dāng)k=1,p=5時(shí),若數(shù)列{an}成等比數(shù)列,求t的值;
(2)設(shè)數(shù)列{an}是一個(gè)等比數(shù)列,求{an}的公比及t(用p、k的代數(shù)式表示);
(3)當(dāng)k=1,t=1時(shí),設(shè)Tn=a1+ + +…+ + ,參照教材上推導(dǎo)等比數(shù)列前n項(xiàng)和公式的推導(dǎo)方法,求證:{ Tn ﹣6n}是一個(gè)常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】日,“國(guó)際教育信息化大會(huì)”在山東青島開(kāi)幕.為了解哪些人更關(guān)注“國(guó)際教育信息化大會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在-歲之間的人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為:,,,,.把年齡落在區(qū)間內(nèi)的人分別稱為“青少年”和“中老年”.

關(guān)注

不關(guān)注

合計(jì)

青少年

中老年

合計(jì)

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)保留兩位小數(shù)和眾數(shù);

(2)根據(jù)已知條件完成列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國(guó)際教育信息化大會(huì)”;

查看答案和解析>>

同步練習(xí)冊(cè)答案