如圖所示,在斜邊為AB的Rt△ABC中,過A作PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.
(1)求證:BC⊥面PAC;
(2)求證:PB⊥面AMN.
精英家教網(wǎng)
證明:(1)∵PA⊥平面ABC,BC?平面ABC.
∴PA⊥BC,又AB為斜邊,
∴BC⊥AC,PA∩AC=A,∴BC⊥平面PAC.
(2)∵BC⊥平面PAC,AN?平面PAC
∴BC⊥AN,又AN⊥PC,且BC∩PC=C,
∴AN⊥面PBC,又PB?平面PBC.∴AN⊥PB,
又∵PB⊥AM,AM∩AN=A,∴PB⊥平面AMN.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

21、如圖所示,在斜邊為AB的Rt△ABC中,過A作PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.
(1)求證:BC⊥面PAC;
(2)求證:PB⊥面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在斜邊為AB的Rt△ABC中,過A作PA⊥平面ABC,AM⊥PB于M,
AN⊥PC于N.(Ⅰ)求證:BC⊥面PAC;
(Ⅱ)求證:PB⊥面AMN.
(Ⅲ)若PA=AB=4,設(shè)∠BPC=θ,試用tanθ表示△AMN 的面積,當(dāng)tanθ取何值時(shí),△AMN的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年重慶市高二下學(xué)期檢測數(shù)學(xué)試卷 題型:解答題

如圖所示,在斜邊為AB的Rt△ABC中,過APA⊥平面ABCAMPBM,

ANPCN.

 

   (1)求證:BC⊥面PAC

   (2)求證:PB⊥面AMN.

   (3)若PA=AB=4,設(shè)∠BPC=θ,試用tanθ表示△AMN的面積,當(dāng)tanθ取何值時(shí),△AMN的面積最大?最大面積是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省溫州市龍灣中學(xué)高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖所示,在斜邊為AB的Rt△ABC中,過A作PA⊥平面ABC,AM⊥PB于M,
AN⊥PC于N.(Ⅰ)求證:BC⊥面PAC;
(Ⅱ)求證:PB⊥面AMN.
(Ⅲ)若PA=AB=4,設(shè)∠BPC=θ,試用tanθ表示△AMN 的面積,當(dāng)tanθ取何值時(shí),△AMN的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案