【題目】已知函數(shù)f(x)=lnxx2,g(x)x2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx﹣1恒成立,求整數(shù)m的最小值;
(Ⅲ)若m=﹣1,且正實數(shù)x1,x2滿足F(x1)=﹣F(x2),求證:x1+x21.
【答案】(Ⅰ)(0,1);(Ⅱ)2;(Ⅲ)詳見解析.
【解析】
(I)先求得函數(shù)的定義域,然后利用導(dǎo)數(shù)求出函數(shù)的單調(diào)遞增區(qū)間.(II)構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最大值,這個最大值恒為非負數(shù),由此求得整數(shù)的最小值.(III)當(dāng)時,,化簡,利用構(gòu)造函數(shù)法以及導(dǎo)數(shù)求其最小值,證得
解:(Ⅰ)f(x)的定義域為:{x|x>0},
f′(x)x,(x>0),
由f′(x)>0,得:0<x<1,
所以f(x)的單調(diào)遞增區(qū)間為(0,1).
(Ⅱ)F(x)=f(x)+g(x)=lnxmx2+x,x>0,
令G(x)=F(x)﹣(mx﹣1)=lnxmx2+(1﹣m)x+1,
則不等式F(x)≤mx﹣1恒成立,即G(x)≤0恒成立.
G′(x)mx+(1﹣m),
①當(dāng)m≤0時,因為x>0,所以G′(x)>0
所以G(x)在(0,+∞)上是單調(diào)遞增函數(shù),
又因為G(1)=ln1m×12+(1﹣m)+1m+2>0,
所以關(guān)于x的不等式G(x)≤0不能恒成立,
②當(dāng)m>0時,G′(x),
令G′(x)=0,因為x>0,得x,
所以當(dāng)x∈(0,)時,G′(x)>0;當(dāng)x∈(,+∞)時,G′(x)<0,
因此函數(shù)G(x)在x∈(0,)是增函數(shù),在x∈(,+∞)是減函數(shù),
故函數(shù)G(x)的最大值為:
G()=lnm(1﹣m)1lnm,
令h(m)lnm,因為h(m)在m∈(0,+∞)上是減函數(shù),
又因為h(1)0,h(2)ln2<0,所以當(dāng)m≥2時,h(m)<0,
所以整數(shù)m的最小值為2.
(Ⅲ)m=﹣1時,F(xiàn)(x)=lnxx2+x,x>0,
由F(x1)=﹣F(x2),得F(x1)+F(x2)=0,即lnx1x1+lnx2x2=0,
整理得:(x1+x2)=x1 x2﹣ln(x1 x2),
令t=x1x2>0,則由φ(t)=t﹣lnt,得:φ′(t),
可知φ(t)在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增,
所以φ(t)≥φ(1)=1,
所以(x1+x2)≥1,解得:x1+x21,或x1+x21,
因為x1,x2為正整數(shù),所以:x1+x21成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)文”的滿意程度,組織居民給活動打分(分數(shù)為整數(shù).滿分為100分).從中隨機抽取一個容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分數(shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:
(1)算出第三組的頻數(shù).并補全頻率分布直方圖;
(2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,求函數(shù)在上的最值;
(2)若函數(shù)在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+2y+1=0,l2:-2x+y+2=0,它們相交于點A.
(1)判斷直線l1和l2是否垂直?請給出理由.
(2)求過點A且與直線l3:3x+y+4=0平行的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各一元二次不等式中,解集為空集的是( 。
A.(x+3)(x﹣1)>0B.(x+4)(x﹣1)<0
C.x2﹣2x+3<0D.2x2﹣3x﹣2>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和長軸長;
(Ⅱ)設(shè)為橢圓的左焦點, 為直線上任意一點,過點作直線的垂線交橢圓于,記分別為點和到直線的距離,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,曲線,且與的焦點之間的距離為,且與在第一象限的交點為.
(1)求曲線的方程和點的坐標(biāo);
(2)若過點且斜率為的直線與的另一個交點為,過點與垂直的直線與的另一個交點為.設(shè),試求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)和,制成下圖,其中“”表示甲村貧困戶,“”表示乙村貧困戶.若,則認定該戶為“絕對貧困戶”,若,則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;若,則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.
(1)從乙村的50戶中隨機選出一戶,求該戶為“絕對貧困戶”的概率;
(2)從甲村所有“今年不能脫貧的非絕對貧困戶”中任選2戶,求選出的2戶均為“低收入戶”的概率;
(3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com