命題α:sinθ=
2
2
,命題β:tanθ=1,命題α是命題β的 ( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
sinθ=
2
2
得,θ=
π
4
+2kπ
 或
4
+2kπ
,(k∈z),
則tanθ=±1,故α推不出β,故α是β不充分條件;
由tanθ=1得,θ=
π
4
+kπ
,(k∈z),則sinθ=±
2
2
,故α是β不必要條件;
∴α是β既不充分也不必要條件,
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的有
 

①若-
π
2
<α<β<
π
2
,則α-β范圍為(-π,π).②若α在第一象限,則
α
2
在一、三象限.③若sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
,則m∈(3,9.)④sin
θ
2
=
3
5
,cos
θ
2
=-
4
5
,則θ在三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①“?x∈R,2x>3”的否定是“?x∈R,2x≤3”;
②命題“函數(shù)y=sin(?x+
π
3
)
的最小正周期是π,則?=2”是真命題;
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是假命題;
④f(x)是(-∞,0)∪(0,+∞)上的偶函數(shù),x>0時(shí)f(x)的解析式是f(x)=x3
則x<0時(shí)f(x)的解析式是f(x)=-x3
其中正確的說(shuō)法是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①半徑為2,圓心角的弧度數(shù)為
1
2
的扇形面積為
1
2
;
②若α、β為銳角,tan(α+β)=
1
2
,tan β=
1
3
,則α+2β=
π
4
;
③函數(shù)y=cos(2x-
π
3
)的一條對(duì)稱軸是x=
2
3
π
;
?=
3
2
π
是函數(shù)y=sin(2x+?)為偶函數(shù)的一個(gè)充分不必要條件.
其中真命題的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:
(1)函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
(2)函數(shù)f(x)=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)
對(duì)稱;
(3)函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
(4)設(shè)θ是第二象限角,則tan
θ
2
>cot
θ
2
,且sin
θ
2
>cos
θ
2

(5)函數(shù)y=cos2x+sinx的最小值是-1.
其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下四個(gè)命題,所有真命題的序號(hào)為
 

①?gòu)目傮w中抽取的樣本(x1,y1),(x2,y2),L,(xn,yn),若記
.
x
=
1
n
i=1nxi
.
y
=
1
n
i=1nyi,則回歸直線y=bx+a必過(guò)點(diǎn)(
.
x
.
y

②將函數(shù)y=cos2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
6
)
的圖象;
③已知數(shù)列an,那么“對(duì)任意的n∈N*,點(diǎn)Pn(n,aa)都在直線y=2x+1上”是{an}為等差數(shù)列的“充分不必要條件”
④命題“若x≥2,則x≥2或x≤-2”的否命題是“若{x}≥2,則-2<x<2”

查看答案和解析>>

同步練習(xí)冊(cè)答案