18.已知三棱錐O-ABC中,A、B、C三點在以O(shè)為球心的球面上,若AB=BC=1,∠ABC=120°,三棱錐O-ABC的體積為$\frac{\sqrt{5}}{4}$,則球O的表面積為( 。
A.$\frac{32}{3}$πB.16πC.64πD.544π

分析 求出底面三角形的面積,利用三棱錐的體積求出O到底面的距離,求出底面三角形的所在平面圓的半徑,通過勾股定理求出球的半徑,即可求解球的體積.

解答 解:三棱錐O-ABC,A、B、C三點均在球心O的表面上,且AB=BC=1,∠ABC=120°,AC=$\sqrt{3}$,

∴S△ABC=$\frac{1}{2}×1×1×sin120°$=$\frac{\sqrt{3}}{4}$,
∵三棱錐O-ABC的體積為$\frac{\sqrt{5}}{4}$,△ABC的外接圓的圓心為G,∴OG⊥⊙G,
外接圓的半徑為:GA=$\frac{\sqrt{3}}{2sin120°}$=1,
∴$\frac{1}{3}×\frac{\sqrt{3}}{4}×$OG=$\frac{\sqrt{5}}{4}$,
∴OG=$\sqrt{15}$,
球的半徑為:$\sqrt{15+1}$=4.
球的表面積:4π42=64π.
故選:C.

點評 本題考查球的表面積的求法,球的內(nèi)含體與三棱錐的關(guān)系,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,AC=BC=1,∠ACB-90°,PA⊥平面ABC,CE∥PA,PA=2CE=2,
(1)求證:平面EPB⊥平面APB
(2)求二面角A-BE-P的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,平面四邊形ABCD中,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,則△ADC的面積S為$\frac{3+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)是一次函數(shù),且f(f(x))=4x+1,則f(x)=$2x+\frac{1}{3},或-2x-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.tan$\frac{11π}{6}$的值是( 。
A.$\frac{{\sqrt{3}}}{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}的前n項和Sn=3n2+8n(n∈N*),則{an}的通項公式為(  )
A.an=6n+8B.an=6n+5C.an=3n+8D.an=3n+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(bmodm),例如11≡4(bmod7),如圖所示的程序框圖的算法源于我國古代聞名中外的《中國剩余定理》,執(zhí)行該程序框圖,則輸出的n=(  )
A.16B.17C.19D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+6,x∈[1,2]}\\{x+7,x∈[-1,1]}\end{array}\right.$,則f(x)的最大值與最小值的差為4.

查看答案和解析>>

同步練習(xí)冊答案