橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率e=,過(guò)點(diǎn)C(-1,0)的直線交橢圓于A,B兩點(diǎn),且滿足為常數(shù)。

(1)當(dāng)直線的斜率k=1且時(shí),求三角形OAB的面積.

(2)當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程.

 

【答案】

 

(1)

(2)

【解析】(1)

(2),故橢圓為:

②,把代入橢圓方程得:

    

③   

由②③知道

當(dāng)且僅當(dāng)時(shí),即時(shí),S取得最大值。

代入③④得,

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率e=
2
3
,過(guò)點(diǎn)C(-1,0)的直線l交橢圓于A、B兩點(diǎn),且滿足:
CA
BC
(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問(wèn):實(shí)數(shù)λ和直線l的斜率k(k∈R)分別為何值時(shí),橢圓E的短半軸長(zhǎng)取得最大值?并求出此時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率e=,過(guò)點(diǎn)C(-1,0)的直線交橢圓于A,B兩點(diǎn),且滿足為常數(shù)。

       (1)當(dāng)直線的斜率k=1且時(shí),求三角形OAB的面積.

       (2)當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓E的中心在原點(diǎn)O,焦點(diǎn)在軸上,其離心率, 過(guò)點(diǎn)C(-1,0)的直線與橢圓E相交于A、B兩點(diǎn),且滿足點(diǎn)C分向量的比為2.

(1)用直線的斜率k ( k≠0 ) 表示△OAB的面積;(2)當(dāng)△OAB的面積最大時(shí),求橢圓E的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南省鄭州47中高考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率,過(guò)點(diǎn)C(-1,0)的直線l交橢圓于A、B兩點(diǎn),且滿足:(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問(wèn):實(shí)數(shù)λ和直線l的斜率k(k∈R)分別為何值時(shí),橢圓E的短半軸長(zhǎng)取得最大值?并求出此時(shí)的橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案