設(shè)函數(shù)f(x)=2lnx-x2.則函數(shù)f(x)的單調(diào)遞增區(qū)間為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求出函數(shù)f(x)=2lnx-x2的導(dǎo)數(shù)f′(x)=
2
x
-2x,令f(x)>0,解得:x>1,x<-1,從而求出單調(diào)增區(qū)間.
解答: 解;∵函數(shù)f(x)=2lnx-x2,
∴f′(x)=
2
x
-2x,
令f(x)>0,解得:x>1,x<-1(舍),
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為:(1,+∞).
故答案為:(1,+∞).
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,本題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a:b:c=3:2:4,則最大角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有xf′(x)-f(x)<0恒成立,則不等式x2f(x)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足|z|=2,則|z-3+4i|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-
1
3
x3+4x+f′(1),則曲線f(x)在點(diǎn)(0,f(0))處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x>0,x+
9
x+1
≥t”為真,則實(shí)數(shù)t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(1,1),且橫、縱截距相等的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖,輸出結(jié)果s的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是函數(shù)f(x)=x3-x+1的導(dǎo)數(shù),則
f′(1)
f(1)
的值是( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案