等比數(shù)列{an}的公比q>0,已知a2=1,a2012+a2011=6a2010,則{an}的前4項(xiàng)和S4=
15
2
15
2
分析:由已知利用等比數(shù)列的通項(xiàng)可得,a2010q2+a2010q=6a2010,結(jié)合q>0可求q,然后代入等比數(shù)列的求和公式即可求解
解答:解:∵q>0,a2=1,a2012+a2011=6a2010
∴a2010q2+a2010q=6a2010
∴q2+q=6,解得q=2
a1=
a2
q
=
1
2

∴S4=
a1(1-q4)
1-q
=
1-24
1-2
×
1
2
=
15
2

故答案為:
15
2
點(diǎn)評:本題主要考查了等比數(shù)列的通項(xiàng)公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果一個(gè)數(shù)列的各項(xiàng)均為實(shí)數(shù),且從第二項(xiàng)起開始,每一項(xiàng)的平方與它前一項(xiàng)的平方的差都是同一個(gè)常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公方差.
(1)若數(shù)列{bn}是等方差數(shù)列,b1=1,b2=3,求b7
(2)是否存在一個(gè)非常數(shù)數(shù)列的等差數(shù)列或等比數(shù)列,同時(shí)也是等方差數(shù)列?若存在,求出這個(gè)數(shù)列;若不存在,說明理由.
(3)若正項(xiàng)數(shù)列{an}是首項(xiàng)為2、公方差為4的等方差數(shù)列,數(shù)列{
1
an
}
的前n項(xiàng)和為Tn,是否存在正整數(shù)p,q,使不等式Tn
pn+q
-1
對一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省常州中學(xué)高三最后沖刺綜合練習(xí)數(shù)學(xué)試卷4(文科)(解析版) 題型:解答題

如果一個(gè)數(shù)列的各項(xiàng)均為實(shí)數(shù),且從第二項(xiàng)起開始,每一項(xiàng)的平方與它前一項(xiàng)的平方的差都是同一個(gè)常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公方差.
(1)若數(shù)列{bn}是等方差數(shù)列,b1=1,b2=3,求b7
(2)是否存在一個(gè)非常數(shù)數(shù)列的等差數(shù)列或等比數(shù)列,同時(shí)也是等方差數(shù)列?若存在,求出這個(gè)數(shù)列;若不存在,說明理由.
(3)若正項(xiàng)數(shù)列{an}是首項(xiàng)為2、公方差為4的等方差數(shù)列,數(shù)列的前n項(xiàng)和為Tn,是否存在正整數(shù)p,q,使不等式對一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案