若變量想x,y滿足約束條件
x≤0
y≥0
y-x≤2
,則z=x+y的最小值為
 
考點(diǎn):簡單線性規(guī)劃
專題:計(jì)算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,將z=x+y化為y=-x+z,z相當(dāng)于直線y=-x+z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

將z=x+y化為y=-x+z,z相當(dāng)于直線y=-x+z的縱截距,
故當(dāng)過點(diǎn)(-2,0)時(shí),有最小值,
z=x+y的最小值為z=-2+0=-2;
故答案為:-2.
點(diǎn)評(píng):本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-ax+b<0的解集為{x|1<x<7},求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=-x2+2x+a(a∈R).
(1)若函數(shù)f(x)在(0,+∞)上函數(shù)值均小于0,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在[-1,1]上單調(diào)遞增?若存在,求出a的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=
n+2
3
an
(1)求a2、a3
(2)求{an}的通項(xiàng)公式
(3)若bn=
1
2an
,求證:數(shù)列{bn}的前2K項(xiàng)中,所有偶數(shù)的和小于
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:x4-8x3+75x2+44=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x>0”是“x≠0”的
 
條件.(“充分不必要條件”、“必要不充分”、“充要條件”、“既不充分也不必要條件”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非零向量
a
,
b
滿足|
a
-
b
|=|
a
+
b
|=2|
a
|,則向量
a
-
b
a
夾角的余弦值為( 。
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮等比數(shù)列{an}的公比為q,若a1=
lim
n→∞
(a3+a4+…),則q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,O是面對(duì)角線B1D1的中點(diǎn).
(1)求證:AO∥平面BDC1;
(2)求證:A1C⊥平面BDC1

查看答案和解析>>

同步練習(xí)冊(cè)答案