精英家教網 > 高中數學 > 題目詳情
設定義域為R的函數f(x)=,若關于x的方程2f2(x)-(2a+3)f(x)+3a=0有五個不同的實數解,則們組題意的a的取值范圍是( )
A.(0,1)
B.
C.(1,2)
D.
【答案】分析:題中原方程2f2(x)-(2a+3)f(x)+3a=0有5個不同實數解,即要求對應于f(x)=某個常數有3個不同實數解,故先根據題意作出f(x)的簡圖,由圖可知,只有當f(x)=a時,它有三個根;再結合2f2(x)-(2a+3)f(x)+3a=0有兩個不等實根,即可求出結論.
解答:解:∵題中原方程2f2(x)-(2a+3)f(x)+3a=0有且只有5個不同實數解,
∴即要求對應于f(x)等于某個常數有3個不同實數解,
∴故先根據題意作出f(x)的簡圖:
由圖可知,只有當f(x)=a時,它有三個根.
所以有:1<a<2    ①.
再根據2f2(x)-(2a+3)f(x)+3a=0有兩個不等實根,
得:△=(2a+3)2-4×2×3a>0⇒     ②
結合①②得:1<a<a<2.
故選:D.
點評:本題考查了函數的圖象與一元二次方程根的分布的知識,屬于難題,采用數形結合的方法解決,使本題變得易于理解.數形結合是數學解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數學問題的本質;另外,由于使用了數形結合的方法,很多問題便迎刃而解,且解法簡捷.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關于x的方程f2(x)-(2m+1)f(x)+m2=0有7個不同的實數根,則實數m=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關于x的方程f2(x)-(2m+1)f(x)+m2=0有5個不同的實數解,則m=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
-2x+a2x+1+b
(a,b為實數)若f(x)是奇函數.
(1)求a與b的值;
(2)判斷函數f(x)的單調性,并證明;
(3)證明對任何實數x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
|lg|x-1||,x≠1
0,          x=1
,則關于x的方程f2(x)+bf(x)+c=0有7個不同實數解的充要條件是 ( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若關于x的方程f2(x)+bf(x)+c=0有三個不同的實數解x1、x2、x3,則x12+x22|x32等于(  )

查看答案和解析>>

同步練習冊答案